
6.300 Problem Set 11
Problem 1: Time and Frequency Patterns
Eight time-domain waveforms are shown in the left panels below. For each signal on the left, determine the corresponding
CTFT magnitude plot on the right.
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6.300 Signal Processing (Fall 2024) 2 Problem Set 11

Problem 2: Ideal Filters and “Windowed” Filter Design
Part A: The “Ideal” Low-Pass Filter

A low-pass filter passes low frequencies and attenuates high frequencies. An ideal low-pass filter is parameterized by its
”cutoff” frequency Ωc. It allows frequency components below the cutoff frequency to pass through unchanged and eliminates
frequencies above the cutoff frequency. The plot below shows the frequency response of an ideal low-pass filter. Notice that
HLP(Ω) = 1 when |Ω| < Ωc, and HLP(Ω) = 0 for frequencies near π.
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The ideal low-pass filter shown above is periodic in 2π. Explain why.

The low-pass filter described above is linear and time-invariant. Therefore, its output should be given by the convolution of it
input with the unit-sample response of the filter. Determine an expression for this system’s unit sample response hLP[n] in
terms of Ωc and any relevant constants.

Part B: Approximating an Ideal Low-Pass Filter

Notice that the unit-sample response of the ideal low-pass filter described in the previous section has infinite extent.
Computing the output using convolution would require an infinite number multiplies and an infinite number of additions!
Fortunately, the values of hLP[n] tend to get smaller as |n| gets large. This observation motivates approximating hLP[n] as
ĥLP[n]:

ĥLP[n] =

{
hLP[n] if −M ≤ n ≤ M

0 otherwise

which can be thought of as resulting from multiplication of the original hLP[n] by a rectangular window w[n].

Specifically, ĥLP[n] = w[n]hLP[n] where w[n] is given by w[n] =

{
1 if −M ≤ n ≤ M

0 otherwise

Determine an expression for W (Ω), which is the DTFT of our rectangular window.

Hint: The sum of a finite number of geometric terms is
∑N−1

n=0 an = 1−aN

1−a , provided that a 6= 1.

You do not need to find a closed-form expression for ĤLP(Ω), but how does it relate to HLP(Ω) and W (ω)?

Use Python to make plots of the frequency response of the windowed ideal low-pass filter, ĤLP(Ω), with Ωc = π/4 and
Ωc = π/10, each with M = 50 and M = 500. How do Ωc and M affect the frequency response of the system? Can you
explain those results in terms of the relationship between ĤLP(Ω), HLP(Ω), and W (ω)?
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Part C: The “Ideal” Band-Pass Filter

Next we’ll consider a different type of filter called a band-pass filter. This type of filter passes frequencies in a particular range
(not necessarily centered around 0) and eliminates frequencies outside that range.

A band-pass filter is parameterized by the center frequency Ωb and half-width Ωc of the band of frequencies that is passed, as
illustrated below.
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Determine a closed-form expression for the unit-sample response of this system, hBP[n] in terms of Ωb, Ωc, and any necessary
constants. How does this relate to hLP[n] from Part A? Explain these similarities.

To get a sense of the shape of this system’s unit sample response, use Python to generate plots of the unit sample response for
Ωb = π/2, with Ωc = π/10 and Ωc = π/30, each plotted from from n = −100 to n = 100.

Part D: Approximating an Ideal Band-Pass Filter

The unit sample response of an ideal band-pass filter is also infinite. Once again, we will consider approximating this filter
with a windowed version:

ĥBP[n] =

{
hBP[n] if −M ≤ n ≤ M

0 otherwise

Use Python to make plots of the frequency response of the windowed ideal band-pass filter with Ωb = π/2 and Ωb = π/4;
Ωc = π/10 and Ωc = π/30; and M = 50 and M = 500.

Explain the effect of Ωb, Ωc, and M on the frequency response of the filter.

3



6.300 Signal Processing (Fall 2024) 4 Problem Set 11

Problem 3: Designing a Little Filter
Consider a filter whose unit-sample response is given by the following, for some values of a and b:

h[n] =


a if n = 0

b if n = 1

0 otherwise

By adjusting a and b, we can dramatically alter the frequency response of this system. How would you set a and b to make as
effective of a low-pass filter as possible? How would you set a and b to make as effective of a high-pass filter as possible?
Explain your results and your reasoning.

4


	Time and Frequency Patterns
	Ideal Filters and ``Windowed'' Filter Design
	Designing a Little Filter

