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6.300: Signal Processing

Fall 2024
Quiz #2

4 problems • 100 minutes • 25% of course grade

Name: Solutions

Kerberos: 6.300@mit.edu

• Wait until we tell you to begin.

• If we can’t read it, we can’t grade it.

• If you have questions, come to us at the front to ask.

• If you finish the quiz with less than 10 minutes remaining,
quietly remain seated until we call time.

Problem #1 25 points (a) 5, (b) 3, (c) 3, (d) 5, (e) 4, (f) 5

Problem #2 16 points (a) 8, (b) 8

Problem #3 25 points (a) 5, (b) 4, (c) 5, (d) 6, (e) 5

Problem #4 34 points (a) 4, (b) 4, (c) 5, (d) 4, (e)4, (f) 4, (g) 4, (h) 5
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Problem #1: A Cappella Transforms

Note: (a), (b), and (c) may be completed independently of (d), (e), (f).

Your TA, John (who has lost his signal processing memory), needs your help. The Chorallaries have
come across a signal that is said to be the answer to the ultimate a cappella sound. Unfortunately,
they only have the frequency response. Knowing that you’re an expert in signal synthesis, John has
come to you asking for your help finding the original signal from this frequency response:

X(ω) =

{
ejω −π ≤ ω ≤ π

0 otherwise

(a) The Ultimate Signal

Help the Chorallaries find the ultimate signal by determining a closed-form expression for x(t)

x(t) =
sin(π(t+1))
π(t+1)

or− sin(πt)
π(t+1)
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The Chorallaries thank you so much for your hard work, but they started messing with things and
messed up their frequency response — several times! They have a hunch that the following signals
can be represented in terms of the original signal x(t), but they don’t know what to do. For the
signal xb(t) and xc(t) below, could you help them to express in terms of x(t)?

(b) Encore!

Xb(ω) =

{
1 + e−2jω −π ≤ ω ≤ π

0 otherwise

xb(t) = x(t− 1)+x(t− 3) or x(t− 1)+ 1
2x(−

t
2)

(c) Here We Go Again

Xc(ω) =

{
−ω2e−jω + jω3e−jω −π ≤ ω ≤ π

0 otherwise

xc(t) = x′′(−t)−x′′′(−t) or x′′(t−2)−x′′′(t−2)
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(d) The Next Great Signal

The Chorallaries now discover a new signal y(t) that can make any other signal sound beautiful!
They want to improve a boring signal z(t) by convolving it with y(t). Plot the convolution (y∗z)(t).
Label all key parameters, including zero-crossings, maxima, minima, and where those extrema occur.

y(t) =


−1 0 ≤ t < 1

1 2 ≤ t < 3

0 otherwise

z(t) =


1 0 ≤ t < 4

1 5 ≤ t < 6

0 otherwise
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(e) Sampling the Signal on a Slow Computer

Now they want to use an old computer to analyze these signals. They take a discrete version of the
signals by sampling at 1 Hz with sample n = 0 taken at t = 0, to get zd[n] and yd[n]. Plot zd[n]
and yd[n] with all important elements labeled.
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(f) Making a New Sampled Signal

Their computer is slow, so they decide to analyze just N = 6 samples of this signal, from n = 0 to
n = 5. What is the circular convolution of zd[n] with yd[n], analyzed with N = 6? Plot with all
important elements labeled.
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Problem #2: DFT Matching

Eight signals g1[n] to g8[n] are derived from f1[n], f2[n], f3[n], and f4[n]. Match each time-domain
signal gi[n] to the magnitude plot of its DFT computed with window size N = 24. For partial
credit, briefly explain why the graph you chose is correct (a few words/expression is sufficient).
Magnitude plots (A-P) are on the next two pages. The same plot may be used more than once.

(a) Periodic in DFT Window N = 24

Consider time-domain signals f1[n] and f2[n].

f1[n] = cos

(
5πn

12

)
f2[n] = cos

(
7πn

12

)
Answer Explanation

1. g1[n] = f1[n− 3]
C

2. g2[n] = f1[n] + f2[n] H

3. g3[n] = f1[n] · f2[n] F

4. g4[n] = (f1 ⊛ f2)[n] A

(b) Aperiodic in DFT Window N = 24

Consider time-domain signals f3[n] and f4[n].

f3[n] = cos

(
5πn

9

)
f4[n] = cos

(
7πn

9

)

1. g5[n] = f3[n− 6]
I

2. g6[n] = f4[n+ 4]
L

3. g7[n] = f3[n] + f4[n] M

4. g8[n] =

{
f3[

n
2
] + f4[

n
2
] if n even

0 otherwise O
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Note: Magnitude plots are normalized such that the largest magnitude is 1.
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Note: Magnitude plots are normalized such that the largest magnitude is 1.
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Problem #3: System Responses

(a) Consider the following linear, time-invariant system.

h1[n]x[n] y[n]

When the input is
x1[n] = δ[n] + δ[n− 1],

the output is
y1[n] = 2δ[n] + 2δ[n− 1] + δ[n+ 1] + δ[n− 2].

Determine a simplified expression for the system’s unit sample response h1[n].

Solution: Re-write y[n] as

y[n] = (δ[n] + δ[n+ 1]) + (δ[n] + δ[n− 1]) + (δ[n− 1] + δ[n− 2]).

We can see that if the input is x1[n] = δ[n] + δ[n − 1], then to get the output y[n], the
convolution with h1[n] takes one shift to the left, one shift to the right, one without shift; all
three have scaling factor of 1. Therefore we can conclude h1[n] = δ[n+ 1] + δ[n] + δ[n− 1].

(b) Suppose that the input is x2[n] = 2δ[n− 3]. Determine the system’s output y2[n].

Solution: y2[n]=(x2 ∗ h1)[n] = 2δ[n− 2] + 2δ[n− 3] + 2δ[n− 4].

(c) Suppose that the input is x3[n] = sin(2π
3
n). Determine the system’s output y3[n].

Solution: h1[n] = δ[n+ 1] + δ[n] + δ[n− 1] ↔ H1(Ω) = 1 + 2 cos(Ω)

x3[n] = sin

(
2π

3
n

)
=

1

2j
(ej

2π
3
n − e−j 2π

3
n)

y3[n] = H1

(
2π

3

)(
1

2j
(ej

2π
3
n − e−j 2π

3
n)

)
= 0
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(d) Suppose that the input is x4[n] = cos(π
4
n). Determine Y4(Ω), the discrete-time Fourier transform

(DTFT) of the system’s output.

Solution: H1(Ω) = 1 + 2 cos(Ω).

x4[n] = cos

(
π

4
n

)
=

1

2
(ej

π
4
n + e−j π

4
n)

X4(Ω) = πδ
(
Ω− π

4

)
+ πδ

(
Ω +

π

4

)
for Ω ∈ [−π, π]

Y4(Ω) = H1(Ω)X4(Ω) =

(
1 + 2 cos

(
π

4

))
X4

(π
4

)
= π(1 +

√
2)

(e) Consider a new linear, time-invariant system.

h1[n]x[n] w[n] h1[n] y[n]

Determine the cascaded system’s unit sample response h2[n], such that y[n] = (x ∗ h2)[n].

Solution: h1[n] = δ[n+ 1] + δ[n] + δ[n− 1].

h2[n] = (h1 ∗ h1)[n] = δ[n+ 2] + 2δ[n+ 1] + 3δ[n] + 2δ[n− 1] + δ[n− 2].
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Problem #4: Discrete-Time Systems

(a) Unit-Sample Response of System S1

Determine an expression for the unit-sample response h[n] of the linear, time-invariant system S1

defined by the following linear, constant-coefficient difference equation, where 0 < α < 1.

y[n] + αy[n− 1] = x[n]

Assume that, before time n = 0, the system is at rest. That is, x[n] = 0 and y[n] = 0 for n < 0.

Solution: It may be more insightful to re-write the difference equation as

y[n] = x[n]− αy[n− 1].

To determine the unit-sample response, set x[n] = δ[n].

y[0] = x[0]− αy[−1] = 1− α(0) = 1 = h[0]

y[1] = x[1]− αy[0] = 0− α(1) = −α = h[1]

y[2] = x[2]− αy[1] = 0− α(−α) = α2 = h[2]

y[3] = x[3]− αy[2] = 0− α(α2) = −α3 = h[3]

· · ·

The unit-sample response h[n] is a geometric sequence.

h[n] = (−α)nu[n] = δ[n]− αδ[n− 1] + α2δ[n− 2]− α3δ[n− 3] + · · ·
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(b) Frequency Response of System S1

Determine an expression for the frequency response H(Ω) of the aforementioned system.

Solution: Apply properties of the DTFT to transform the time-domain difference equation
into a frequency-domain algebraic equation. The frequency response H(Ω) is the ratio of
Y (Ω) to X(Ω). (

1 + αe−jΩ
)
Y (Ω) = X(Ω)

Y (Ω)

X(Ω)
= H(Ω) =

1

1 + αe−jΩ
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(c) Plot the Frequency Response of System S1

Sketch the frequency response H(Ω) of the aforementioned system. Label all key parameters,
including maxima, minima, and the points at which those extrema occur.
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(d) Name that Filter (System S1)

Is the frequency response H(Ω) best described as a low-pass filter, high-pass filter, band-pass filter,
or band-stop filter? Recall that 0 < α < 1.

No credit will be awarded for answers without justification.

low-pass filter high-pass filter band-pass filter band-stop filter

Solution: All DTFTs are periodic in Ω = 2π. A low-pass filter has maximum gain near Ω = 0
and attenuates frequencies near Ω = ±π, while a high-pass filter attenuates frequencies near
Ω = 0 and has maximum gain near Ω = ±π.

H(0) =
1

1 + α
< H(±π) =

1

1− α
=⇒ high-pass filter

(e) Unit-Sample Response of System S2

Consider another linear, time-invariant system S2 with frequency response

G(Ω) = 1 + αe−jΩ

where, as before, 0 < α < 1. Determine the system’s unit-sample response g[n].

Solution: Compute the inverse DTFT of G(Ω).

g[n] =
1

2π

∫
2π

(
1 + αe−jΩ

)
ejΩndΩ =

1

2π

∫
2π

ejΩndΩ +
α

2π

∫
2π

ejΩ(n−1)dΩ = δ[n] + αδ[n− 1]

(f) Difference Equation for System S2

For system S2, determine a difference equation relating the input x[n] to the output y[n]. Again,
assume that, before time n = 0, the system is at rest — that is, x[n] = 0 and y[n] = 0 for n < 0.

Solution: Recall that the frequency response G(Ω) is the ratio of Y (Ω) to X(Ω).

G(Ω) = 1 + αe−jΩ =
Y (Ω)

X(Ω)
=⇒ Y (Ω) =

(
1 + αe−jΩ

)
X(Ω) =⇒ y[n] = x[n] + αx[n− 1]
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(g) Plot the Frequency Response of System S2

Sketch the frequency response G(Ω) of system S2. Label all key parameters, including maxima,
minima, and the points at which those extrema occur.
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(h) Name that Filter (System S2)

Is the frequency response G(Ω) best described as a low-pass filter, high-pass filter, band-pass filter,
or band-stop filter? Recall that 0 < α < 1.

No credit will be awarded for answers without justification.

low-pass filter high-pass filter band-pass filter band-stop filter

Solution: G(Ω) = 1/H(Ω). The inverse of a high-pass filter is a low-pass filter.

G(Ω) =
1

H(Ω)
=⇒ G(0) > G(±π) =⇒ low-pass filter

17


