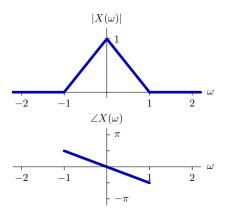
6.300 Problem Set 6 Answers

Problem 1: Fourier Match

The magnitude and angle of the Fourier transform of a signal x(t) are given in the following plots.



Seven magnitude plots (M1-M7) and seven angle plots (A1-A7) are shown on the following page. Determine which of these plots is associated with each of the derived signals below:

• Which plot shows the magnitude of the Fourier transform of $\frac{dx(t)}{dt}$?

If a signal is differentiated in time, its Fourier transform is multiplied by $j\omega$. Thus the magnitude is multipled by $|\omega|$. The result is symmetric about $\omega = 0$. The shape is parabolic over the interval (0, 1), reaching a peak value of $\frac{1}{4}$ at $\omega = \pm \frac{1}{2}$. Therefore the answer is **M5**.

• Which plot shows the angle of the Fourier transform of $\frac{dx(t)}{dt}$?

If a signal is differentiated in time, its Fourier transform is multiplied by $j\omega$. Thus the angle is increased by $\frac{\pi}{2}$ (since $j = e^{j\frac{\pi}{2}}$) if $\omega > 0$ and decreased by $\frac{\pi}{2}$ if $\omega < 0$. The result is an antisymmetric function of ω (as the angle must be if the time function is real), tapering from $\frac{\pi}{2}$ at $\omega = 0$ to 0 at $\omega = 1$. Therefore the answer is **A4**.

• Which plot shows the magnitude of the Fourier transform of (x * x)(t)?

If a signal is convolved with itself, the magnitude of the Fourier transform is squared. The result is 1 at $\omega = 0$ and 0 for $|\omega| > 1$. The square of a number that is between 0 and 1 is less than the number. For example, the result at $\omega = \frac{1}{2}$ is $\frac{1}{4}$. Therefore the answer is **M3**.

• Which plot shows the angle of the Fourier transform of (x * x)(t)?

If a signal is convolved with itself, the Fourier transform is squared. Thus the angle is doubled. Therefore the answer is **A2**.

• Which plot shows the magnitude of the Fourier transform of $x\left(t-\frac{\pi}{2}\right)$?

Delaying in time alters the angle of the Fourier transform but not the magnitude. Therefore the answer is M1.

• Which plot shows the angle of the Fourier transform of $x\left(t-\frac{\pi}{2}\right)$?

Delaying a signal by $\frac{\pi}{2}$ seconds multiples the transform by $e^{-j\frac{\pi}{2}\omega}$. This decreases the angle by $\frac{\pi}{2}\omega$ for $\omega > 0$ and increases the angle by $\frac{\pi}{2}|\omega|$ for $\omega < 0$. Therefore the answer is **A2**.

• Which plot shows the magnitude of the Fourier transform of x(2t)?

Compressing in time stretches proportionally in frequency. Therefore the answer is M4.

• Which plot shows the angle of the Fourier transform of x(2t)?

Compressing in time stretches proportionally in frequency. Therefore the answer is A3.

• Which plot shows the magnitude of the Fourier transform of $x^2(t)$?

If a signal is squared, its Fourier transform is convolved with itself. Convolution of a triangle of width 2 with itself produces a result of width 4. Between $\omega = -2$ and $\omega = -1$, the magnitude grows with the square of ω . Between -1 and 0, it grows more slowly than the square. And the result is symmetric in ω . Therefore the answer is **M6**.

• Which plot shows the angle of the Fourier transform of $x^2(t)$?

Squaring a signal corresponds to convolving its Fourier transform with itself. Let $X(\omega)$ represent the original transform. Then:

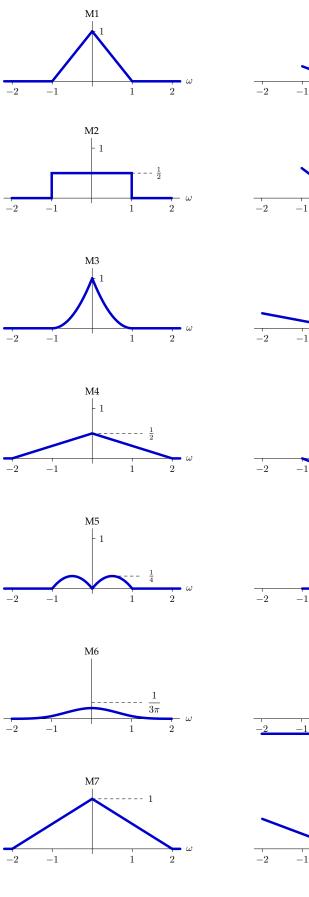
$$(X * X)(\omega) = \frac{1}{2\pi} \int \left| X(\lambda) \right| \times e^{j \angle X(\lambda)} \times \left| X(\omega - \lambda) \right| \times e^{j \angle X(\omega - \lambda)} d\lambda$$

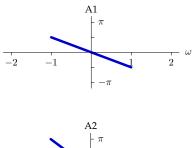
We can see from the original graph that $\angle X(\omega) = -\frac{\pi}{2}\omega$, which we can substitute in to the above equation:

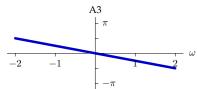
$$\begin{aligned} (X * X)(\omega) &= \frac{1}{2\pi} \int \left| X(\lambda) \right| \times e^{j \angle X(\lambda)} \times \left| X(\omega - \lambda) \right| \times e^{j \angle X(\omega - \lambda)} d\lambda \\ &= \frac{1}{2\pi} \int \left| X(\lambda) \right| \times e^{-j\frac{\pi}{2}\lambda} \times \left| X(\omega - \lambda) \right| \times e^{-j\frac{\pi}{2}(\omega - \lambda)} d\lambda \\ &= \frac{1}{2\pi} \int \left| X(\lambda) \right| \times \left| X(\omega - \lambda) \right| \times e^{-j\frac{\pi}{2}\lambda} \times e^{-j\frac{\pi}{2}(\omega - \lambda)} d\lambda \\ &= \frac{1}{2\pi} \int \left| X(\lambda) \right| \times \left| X(\omega - \lambda) \right| \times e^{-j\frac{\pi}{2}\omega} d\lambda \\ &= \frac{1}{2\pi} e^{-j\frac{\pi}{2}\omega} \int \left| X(\lambda) \right| \times \left| X(\omega - \lambda) \right| d\lambda \end{aligned}$$

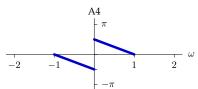
This form shows us that we find the magnitude of this new signal by convolving the magnitudes of the original signal, and that the angle of the new signal is $\angle X_5(\omega) = -\frac{\pi}{2}\omega$.

This must be true everywhere that $|X_5(\omega)|$ is nonzero, which is the range from -2 to 2 (for other ω values, the angle is undefined). Thus, the answer must be **A7**.

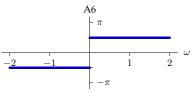


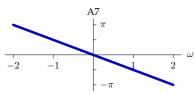






A5 | π





Problem 2: DT Convolution

For these problems, keep in mind both the superposition view of convolution as well as the DT convolution formula:

$$(x*h)[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m] = \ldots + x[-1]h[n+1] + x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + \ldots$$

4

Part A

Let *y* represent the DT signal that results when *f* is convolved with *g*, i.e, y[n] = (f * g)[n].

Determine closed-form expressions for the following variants of *y*:

function	f[n]	g[n]
$y_a[n]$	u[n]	u[n]
$y_b[n]$	u[n]	$\left(\frac{1}{2}\right)^n u[n]$
$y_c[n]$	$\left(\frac{1}{2}\right)^n u[n]$	$\left(\frac{1}{3}\right)^n u[n]$
$y_d[n]$	$\left(\frac{1}{2}\right)^n u[n]$	$\left(\frac{1}{2}\right)^n u[n]$

In all cases, u[n] represents the DT unit step function: $u[n] = \begin{cases} 1 & \text{if } n \ge 0\\ 0 & \text{otherwise} \end{cases}$

For y_a :

$$y_a[n] = \sum_{m=-\infty}^{\infty} u[m]u[n-m]$$

Since u[m] = 0 if m < 0 and u[n - m] = 0 if n - m < 0, we can limit the bounds of the sum:

$$y_a[n] = \sum_{m=0}^n 1 = \begin{cases} n+1 & \text{if } n \ge 0\\ 0 & \text{otherwise} \end{cases}$$
$$y_a[n] = (n+1)u[n]$$

For y_b :

$$y_{b}[n] = \sum_{m=-\infty}^{\infty} u[m] \left(\frac{1}{2}\right)^{n-m} u[n-m]$$
$$= \sum_{m=0}^{n} \left(\frac{1}{2}\right)^{n-m} = \sum_{m=n}^{0} \left(\frac{1}{2}\right)^{m}$$
$$= \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} u[n]$$
$$= \left(2 - \left(\frac{1}{2}\right)^{n}\right) u[n]$$
sing some of $\binom{1}{2}^{n}$ with

Notice that this is equivalent to the running sum of $\left(\frac{1}{2}\right) u[n]$.

For y_c :

$$y_c[n] = \sum_{m=-\infty}^{\infty} \left(\frac{1}{3}\right)^m u[m] \left(\frac{1}{2}\right)^{n-m} u[n-m]$$
$$= \left(\frac{1}{2}\right)^n \sum_{m=0}^n \left(\frac{2}{3}\right)^m$$
$$= \left(\frac{1}{2}\right)^n \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}}$$
$$= \left(3 \left(\frac{1}{2}\right)^n - 2 \left(\frac{1}{3}\right)^n\right) u[n]$$

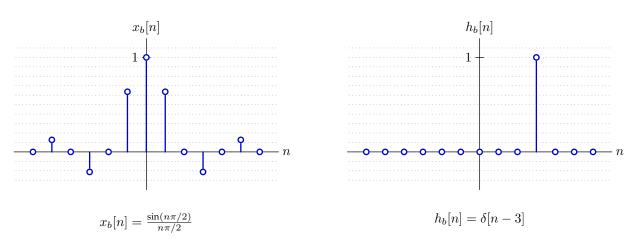
5

For y_d :

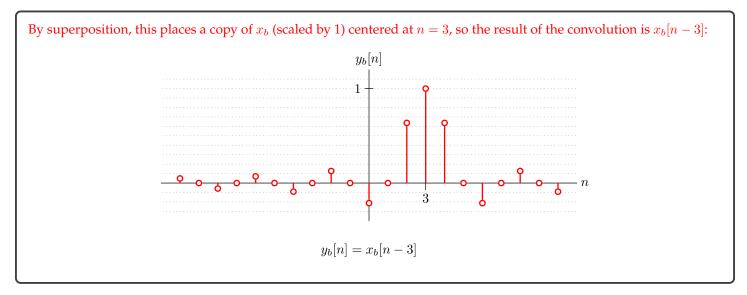
$$y_d[n] = \sum_{m=-\infty}^{\infty} \left(\frac{1}{2}\right)^m u[m] \left(\frac{1}{2}\right)^{n-m} u[n-m]$$
$$= \left(\frac{1}{2}\right)^n \sum_{m=0}^n 1$$
$$= (n+1) \left(\frac{1}{2}\right)^n$$
$$= y_d[n] = (n+1) \left(\frac{1}{2}\right)^n u[n]$$

Part B

Determine a closed-form expression for $y_b[n] = (x_b * h_b)[n]$ with x_b and h_b as shown below:

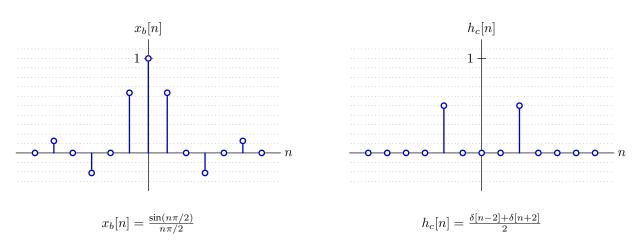


Sketch a graph of your result, labeling key points.

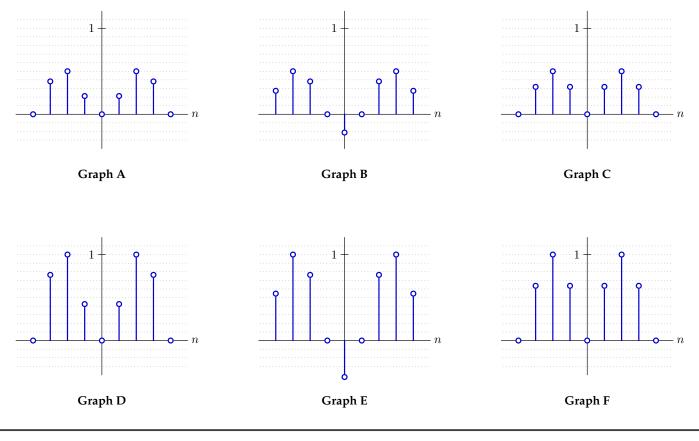


Part C

Consider the same signal x_b from the previous part, now convolved with a different signal h_c :



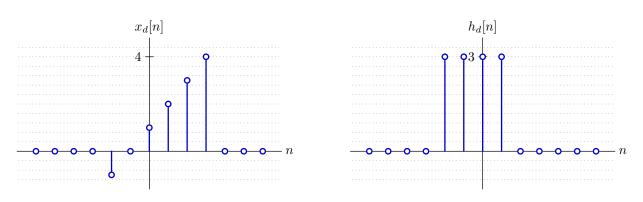
Which of the following represents the result of convolving x_b with h_c ? Explain your reasoning.

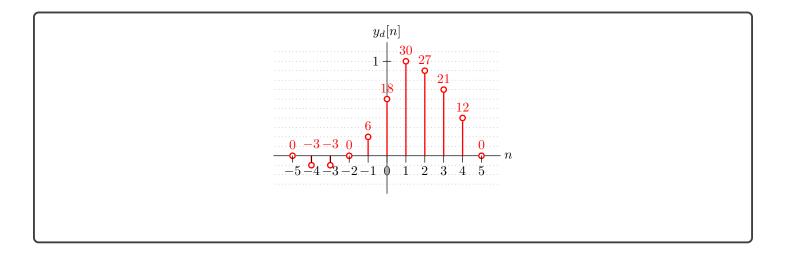


Graph A

Part D

Compute $y_d[n] = (x_d * h_d)[n]$ and plot it, including and labeling all nonzero values. The signals x_d and h_d are zero outside the region shown. You do not need to determine a closed-form expression for $y_d[n]$.





Problem 3: CT Convolution

For these problems, keep in mind the CT convolution formula:

$$(x*h)(t) = \int_{-\infty}^{\infty} x(u)h(t-u)\mathrm{d}u$$

Part A

Let *y* represent the CT signal that results when *f* is convolved with *g*, i.e, y[n] = (f * g)(t).

Determine closed-form expressions for the following variants of *y*:

function	f(t)	g(t)
$y_a(t)$	u(t)	u(t)
$y_b(t)$	u(t)	$e^{-t}u(t)$
$y_c(t)$	$e^{-t}u(t)$	$e^{-2t}u(t)$
$y_d(t)$	$e^{-t}u(t)$	$e^{-t}u(t)$

In all cases, u(t) represents the DT unit step function: $u(t) = \begin{cases} 1 & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$

For y_a :

$$y_a(t) = \int_{-\infty}^{\infty} u(\tau)u(t-\tau)d\tau = \int_0^t d\tau = tu(t)$$

For y_b :

$$y_b(t) = \int_{-\infty}^{\infty} u(\tau)e^{-(t-\tau)}u(t-\tau)d\tau = e^{-t}\int_0^t e^{\tau}d\tau = e^{-t}(e^t-1)u(t) = (1-e^{-t})u(t)$$

For y_c :

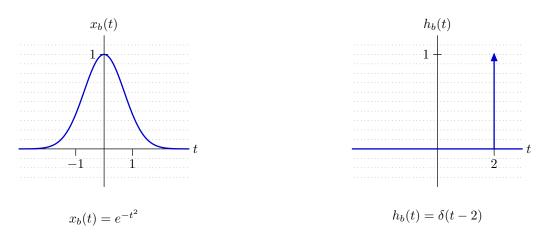
$$y_c(t) = \int_{-\infty}^{\infty} e^{-\tau} u(\tau) e^{-2(t-\tau)} u(t-\tau) d\tau = e^{-2t} \int_0^t e^{\tau} d\tau = e^{-2t} (e^t - 1) u(t) = \left(e^{-t} - e^{-2t}\right) u(t)$$

For y_d :

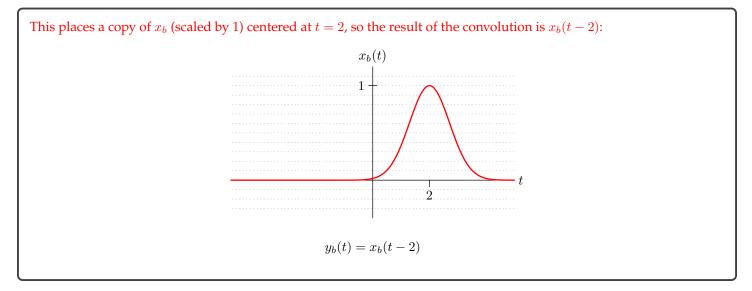
$$y_d(t) = \int_{-\infty}^{\infty} e^{-\tau} u(\tau) e^{-(t-\tau)} u(t-\tau) d\tau = e^{-t} \int_0^t d\tau = e^{-t} t u(t) = t e^{-t} u(t)$$

Part B

Determine a closed-form expression for $y_b(t) = (x_b * h_b)(t)$ with x_b and h_b as shown below:

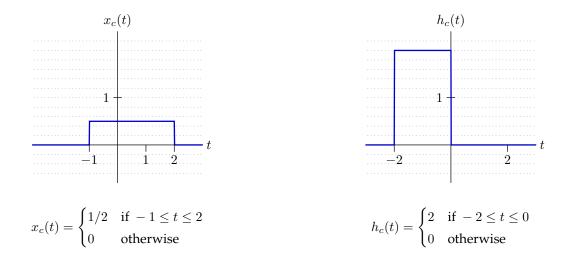


Sketch a graph of your result, labeling key points.

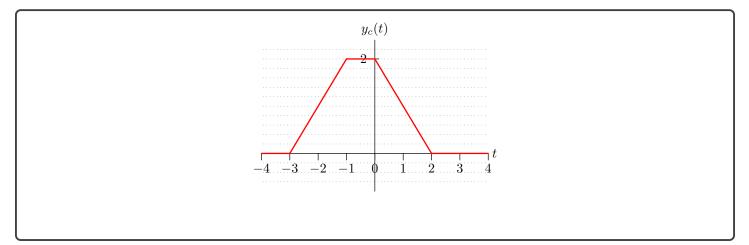


Part C

Consider the signals x_c and h_c shown below:



Sketch and fully label a graph of $y_c(t) = (x_c * h_c)(t)$.



Part D

Consider a polynomial term p(t) that is clamped to zero before t = 0, so that $p(t) = \alpha t^k u(t)$, where k is a non-negative integer. Determine a closed-form expression for $y_d(t) = (p * u)(t)$.

$$y_d(t) = \left(\frac{\alpha}{k+1}\right) \left(t^{k+1}\right) u(t)$$