6.300 Signal Processing

Week 10, Lecture A: Quiz Review-Properties of Fourier Transforms

Lecture slides are available on CATSOOP:

https://sigproc.mit.edu/fall24

Quiz 2: Thursday November 7, 2-4pm 50-340 (2:05-3:45pm exam; 3:45-3:55 scan and upload)

- Closed book except for two page of notes $(8.5'' \times 11''$ both sides)
- No electronic devices (No headphones, cell phones, calculators, …) but you will need your phone at the end! Also please make sure you scan the first page with your name!
- Coverage up to Week #8 (DFT) today's lecture and recitation also useful
- practice quiz as a study aid, no HW#9

Topics we have covered till now

- Fourier Series (CTFS, DTFS)
- Sampling and Aliasing

• Fourier Transforms (CTFT, DTFT)

- Systems:
	- LTI systems & Difference(differential) equation description
	- Impulse response & Convolution
	- Frequency Response & Filtering
- DFT (& circular convolution)

Properties of Fourier Transforms

Continuous-Time Fourier Transform Discrete-Time Fourier Transform

FT Properties: Conjugation

FT Properties: Time Derivative/Difference

FT Properties: Frequency Derivative

If: $y(t) = tx(t)$ $Y(\omega) = j$ \overline{d} $d\omega$ $Y(\omega) = \int y(t) \cdot e^{-j\omega t} dt \longrightarrow Y(\omega) = j \frac{d}{d\omega} X(\omega)$ then: $Y(\omega) = j$ \overline{d} $d\omega$ $X(\omega) = |$ −∞ ∞ $x(t) \cdot (-jt) \cdot e^{-j\omega t} dt$ differentiate both sides w.r.t ω since $X(\omega) = |$ −∞ ∞ $x(t) \cdot e^{-j\omega t} dt$ j \overline{d} $d\omega$ $X(\omega) = |$ −∞ ∞ $(tx(t)) \cdot e^{-j\omega t} dt$ −∞ ∞ $y(t) \cdot e^{-j\omega t} dt$ \overline{d} $d\omega$ $X(\omega$

FT Properties: Scaling Time

If:
$$
y(t) = x(At), A>0
$$

\nthen: $Y(\omega) = \frac{1}{A}X(\frac{\omega}{A})$
\n
$$
Y(\omega) = \int_{-\infty}^{\infty} y(t) \cdot e^{-j\omega t} dt
$$
\n
$$
= \int_{-\infty}^{\infty} x(At) \cdot e^{-j\omega t} dt
$$
\nlet $u = At$, then $t = \frac{u}{A}$, $du = Adt$
\n
$$
Y(\omega) = \int_{-\infty}^{\infty} x(u) \cdot e^{-j\omega\frac{u}{A}} (\frac{1}{A} du)
$$
\n
$$
= \frac{1}{A} \int_{-\infty}^{\infty} x(u) \cdot e^{-j(\frac{\omega}{A})u} du = \frac{1}{A} X(\frac{\omega}{A})
$$

Exercise I

• The magnitude and phase of signal $x(t)'s$ Fourier Transform $X(\omega)$ is shown on the right, find signal $x(t)$.

Let us find $X(\omega)$ first:

participation question

Exercise I

Let $Y(\omega) = \{$

• The magnitude and phase of signal $x(t)'s$ Fourier Transform $X(\omega)$ is shown on the right, find signal $x(t)$.

3, $-3\pi < \omega < 3\pi$
0, Otherwise' $y(t) \leftrightarrow Y(\omega)$, $\frac{d}{dt}$

 $3e^{j\omega t} d\omega =$

From the magnitude and phase plot we can find that

$$
X(\omega) = \begin{cases} j3\omega, & -3\pi < \omega < 3\pi \\ 0, & Otherwise \end{cases}
$$

3

 2π

 dt

 -3π

=

3

 πt

 $\sin(3\pi t$

 $e^{j\omega t}\Big|_{-3\pi}^{3\pi}$

 $\dot{J}t$

$$
x(t) = \frac{d}{dt}y(t) = \frac{9}{t}\cos(3\pi t) - \frac{3}{\pi t^2}\sin(3\pi t)
$$

1

 2π

 $\overline{1}$

 -3π

 3π

 $y(t) =$

3, $-3\pi < \omega < 3\pi$

Topics we have covered till now

- Fourier Series (CTFS, DTFS)
- Sampling and Aliasing
- Fourier Transforms (CTFT, DTFT)
- Systems:
	- LTI systems & Difference(differential) equation description
	- Impulse response & Convolution
	- Frequency Response & Filtering

• DFT (& circular convolution)

Discrete Fourier Transform (DFT)

$$
x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi k}{N}n} \qquad X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi k}{N}n}
$$

DFT (especially efficient FFT algorithm) significantly facilitate computation. Connection with DTFS and DTFT:

 \triangleright with DTFS: DFT is the DTFS of periodically extended version, $x_p[n]$

Topics we have covered till now

- Fourier Series (CTFS, DTFS)
- Sampling and Aliasing
- Fourier Transforms (CTFT, DTFT)
- Systems:
	- LTI systems & Difference(differential) equation description
	- Impulse response & Convolution
	- Frequency Response & Filtering
- DFT (& circular convolution)

Systems

Three different representations for Linear, Time-Invariant (LTI) systems:

• Difference/Differential Equation: e.g. $y[n] - \alpha y[n-1] + \beta y[n-2] = x[n], \quad 0 < \alpha, \beta < 1$ $y(t) + \alpha$ $dy(t)$ dt $= x(t)$, $\alpha > 0$

• Convolution: • Filter: $y(t) = (x * h)(t) =$ −∞ ∞ $y[n] = (x * h)[n] = \sum x[k] h[n-k]$ $y(t) = (x * h)(t) = |x(\tau) h(t - \tau) d\tau$ $k=-\infty$ ∞ $x[k]$ $h[n - k]$ ρ *j* Ω *n* – $J\Omega n \longrightarrow$ LTI $\longrightarrow H(\Omega) e^{j\Omega n}$ $Y(\Omega) = H(\Omega)X(\Omega)$

Freq. domain multiplication correspond to time domain (circular) convolution: We can carry out filtering either in time domain or frequency domain.

$$
(x * h)[n] \stackrel{DTFT}{\iff} H(\Omega)X(\Omega)
$$

$$
\frac{1}{N}(x \odot h)[n] \stackrel{DFT}{\iff} H[k]X[k]
$$

What we have learned

Useful Signals and Their Fourier Transforms

Useful Signals and Their Fourier Transforms

Exercise II

• A LTI system has its frequency response $H(\Omega) =$ 1 1− 1 2 $e^{-j2\Omega}$, find the system's unit sample response.

Exercise II

• A LTI system has its frequency response $H(\Omega) =$ 1 1− 1 2 $e^{-j2\Omega}$, find the system's unit sample response.

If we use $h[n] =$ 1 $\frac{1}{2\pi} \int_{0}^{2\pi}$ 2π $H(\Omega)e^{j\Omega n} d\Omega$, the integration will be complicated. Since we know $H(\Omega)=\sum_{n=-\infty}^{\infty}h[n]e^{-j\Omega n}$, if we consider $H(\Omega)$ as a result of the geometric series (with $0 < \alpha < 1$)

$$
H(\Omega) = \sum_{n=0}^{\infty} \alpha^{n} = \frac{1}{1-\alpha}, \text{ we can see } \alpha = \frac{1}{2} e^{-j2\Omega}, \text{ therefore}
$$

\n
$$
H(\Omega) = \sum_{n=0}^{\infty} \alpha^{n} = \sum_{n=0}^{\infty} \frac{1}{2} e^{-j\Omega 2n}
$$
\n
$$
h[n] = \begin{cases} \left(\frac{1}{2}\right)^{n/2}, & n = 0,2,4,6,8, ..., \infty \\ 0, & \text{otherwise} \end{cases}
$$
\n
$$
h[n] = \begin{cases} \left(\frac{1}{2}\right)^{n/2}, & n = 0,2,4,6,8, ..., \infty \\ 0, & \text{otherwise} \end{cases}
$$
\n
$$
h[n] = \begin{cases} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1
$$