6.300 Signal Processing

Week 10, Lecture A: Quiz Review-Properties of Fourier Transforms

Lecture slides are available on CATSOOP:

https://sigproc.mit.edu/fall24

Quiz 2: Thursday November 7, 2-4pm 50-340 (2:05-3:45pm exam; 3:45-3:55 scan and upload)

- Closed book except for two page of notes (8.5" x 11" both sides)
- No electronic devices (No headphones, cell phones, calculators, ...) but you will need your phone at the end!
 Also please make sure you scan the first page with your name!
- Coverage up to Week #8 (DFT) today's lecture and recitation also useful
- practice quiz as a study aid, no HW#9

Topics we have covered till now

- Fourier Series (CTFS, DTFS)
- Sampling and Aliasing

• Fourier Transforms (CTFT, DTFT)

- Systems:
 - LTI systems & Difference(differential) equation description
 - Impulse response & Convolution
 - Frequency Response & Filtering
- DFT (& circular convolution)

Properties of Fourier Transforms

Continuous-Time Fourier Transform

Property	y(t)	$Y(\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(\omega) + bX_2(\omega)$
Time reversal	x(-t)	$X(-\omega)$
Time delay	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Scaling time	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time derivative	$\frac{dx(t)}{dt}$	$j\omega X(\omega)$
Frequency derivative	tx(t)	$jrac{d}{d\omega}X(\omega)$

Discrete-Time Fourier Transform

Property	y[n]	$Y(\Omega)$
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(\Omega) + bX_2(\Omega)$
Time reversal	x[-n]	$X(-\Omega)$
Time delay	$x[n-n_0]$	$e^{-j\Omega n_0}X(\Omega)$
Conjugation	$x^*[n]$	$X^*(-\Omega)$
Frequency derivative	nx[n]	$jrac{d}{d\Omega}X(\Omega)$

FT Properties: Conjugation

lf:	$y(t) = x^*(t)$
then:	$Y(\omega) = X^*(-\omega)$
$Y(\omega) = \int_{-\infty}^{\infty}$	$\int_{-\infty}^{\infty} y(t) \cdot e^{-j\omega t} dt$
$=\int_{-}^{-}$	$\int_{-\infty}^{\infty} x^*(t) \cdot e^{-j\omega t} dt$
$=\int_{-}^{}$	$\int_{-\infty}^{\infty} x^*(t) \cdot e^{j(-\omega)t} dt$
$=\int_{-}^{}$	$\int_{-\infty}^{\infty} (x(t) \cdot e^{-j(-\omega)t} dt)^*$
= X	$^{*}(-\omega)$

If:	$y[n] = x^*[n]$
then:	$Y(\Omega) = X^* (-\Omega)$
$Y(\Omega) =$	$\sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j\Omega n}$
=	$\sum_{n=-\infty}^{\infty} x^*[n] \cdot e^{-j\Omega n}$
$=\sum_{\substack{n=-\infty\\\infty}}^{\infty} x^*[n] \cdot e^{j(-\Omega)n}$	
$=\sum_{n=-\infty}^{\infty}(x[n]\cdot e^{-j(-\Omega)n})^*$	
$= \lambda$	$X^*(-\Omega)$

FT Properties: Time Derivative/Difference

If: $y(t) = \frac{d}{dt}x(t)$	If: $y[n] = x[n] - x[n-1]$
then: $Y(\omega) = j\omega \cdot X(\omega)$	then: $Y(\Omega) = (1 - e^{-j\Omega}) \cdot X(\Omega)$
$x(t) = \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} d\omega$ differentiate both sides w.r.t t $y(t) = \int_{-\infty}^{\infty} X(\omega) \cdot (j\omega) \cdot e^{j\omega t} d\omega$ $y(t) = \int_{-\infty}^{\infty} (j\omega \cdot X(\omega)) \cdot e^{j\omega t} d\omega$ since $y(t) = \int_{-\infty}^{\infty} Y(\omega) \cdot e^{j\omega t} d\omega \longrightarrow Y(\omega) = j\omega \cdot X(\omega)$	This can be derived based on the time delay property of DTFT.

FT Properties: Frequency Derivative

If: y(t) = tx(t)then: $Y(\omega) = j \frac{d}{d\omega} X(\omega)$ $X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$ differentiate both sides w.r.t ω $\frac{d}{d\omega}X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot (-jt) \cdot e^{-j\omega t} dt$ $j\frac{d}{d\omega}X(\omega) = \int_{-\infty}^{\infty} (tx(t)) \cdot e^{-j\omega t} dt$ since $Y(\omega) = \int_{-\infty}^{\infty} y(t) \cdot e^{-j\omega t} dt \longrightarrow Y(\omega) = j \frac{d}{d\omega} X(\omega)$

lf:	y[n] = nx[n]	
then:	$Y(\Omega) = j \frac{d}{d\Omega} X(\Omega)$	
$X(\Omega) = \sum_{n=-\infty}^{\infty}$	$x[n] \cdot e^{-j\Omega n}$	
differentiate b	oth sides w.r.t Ω	
$\frac{d}{d\Omega}X(\Omega) = \prod_{n=1}^{\infty}$	$\sum_{n=-\infty}^{\infty} x[n] \cdot (-jn) \cdot e^{-j\Omega n}$	
$j\frac{d}{d\Omega}X(\Omega) = \sum_{n=-\infty}^{\infty} nx[n] \cdot e^{-j\Omega n}$		
since $_\infty$		
$Y(\Omega) = \sum_{n = -\infty} y[n] \cdot e^{-j\Omega n} \longrightarrow Y(\Omega) = j \frac{d}{d\Omega} X(\Omega)$		

FT Properties: Scaling Time

If:

$$y(t) = x(At), A>0$$
then:

$$Y(\omega) = \frac{1}{A}X\left(\frac{\omega}{A}\right)$$

$$Y(\omega) = \int_{-\infty}^{\infty} y(t) \cdot e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} x(At) \cdot e^{-j\omega t} dt$$

$$let \ u = At, then \ t = \frac{u}{A}, du = Adt$$

$$Y(\omega) = \int_{-\infty}^{\infty} x(u) \cdot e^{-j\omega \frac{u}{A}} (\frac{1}{A} du)$$

$$= \frac{1}{A} \int_{-\infty}^{\infty} x(u) \cdot e^{-j(\frac{\omega}{A})u} du = \frac{1}{A}X\left(\frac{\omega}{A}\right)$$

Exercise I

• The magnitude and phase of signal x(t)'s Fourier Transform $X(\omega)$ is shown on the right, find signal x(t).

Let us find $X(\omega)$ first:

participation question

Exercise I

• The magnitude and phase of signal x(t)'s Fourier Transform $X(\omega)$ is shown on the right, find signal x(t).

From the magnitude and phase plot we can find that

$$X(\omega) = \begin{cases} j3\omega, & -3\pi < \omega < 3\pi \\ 0, & Otherwise \end{cases}$$

 $y(t) = \frac{1}{2\pi} \int_{-2\pi}^{3\pi} 3e^{j\omega t} d\omega = \frac{3}{2\pi} \frac{e^{j\omega t} \Big|_{-3\pi}^{3\pi}}{it} = \frac{3}{\pi t} \sin(3\pi t)$

$$x(t) = \frac{d}{dt}y(t) = \frac{9}{t}\cos(3\pi t) - \frac{3}{\pi t^2}\sin(3\pi t)$$

Topics we have covered till now

- Fourier Series (CTFS, DTFS)
- Sampling and Aliasing
- Fourier Transforms (CTFT, DTFT)
- Systems:
 - LTI systems & Difference(differential) equation description
 - Impulse response & Convolution
 - Frequency Response & Filtering

• DFT (& circular convolution)

Discrete Fourier Transform (DFT)

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi k}{N}n} \qquad \qquad X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi k}{N}n}$$

DFT (especially efficient FFT algorithm) significantly facilitate computation. Connection with DTFS and DTFT:

 \succ with DTFS: DFT is the DTFS of periodically extended version, $x_p[n]$

Topics we have covered till now

- Fourier Series (CTFS, DTFS)
- Sampling and Aliasing
- Fourier Transforms (CTFT, DTFT)
- Systems:
 - LTI systems & Difference(differential) equation description
 - Impulse response & Convolution
 - Frequency Response & Filtering
- DFT (& circular convolution)

Systems

Three different representations for Linear, Time-Invariant (LTI) systems:

• Difference/Differential Equation: e.g. $y[n] - \alpha y[n-1] + \beta y[n-2] = x[n], \quad 0 < \alpha, \beta < 1$ $y(t) + \alpha \frac{dy(t)}{dt} = x(t), \alpha > 0$

• Convolution: $y[n] = (x * h)[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] \qquad y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$ • Filter: $e^{j\Omega n} \longrightarrow \Box T \longrightarrow H(\Omega) e^{j\Omega n} \qquad Y(\Omega) = H(\Omega)X(\Omega)$

We can carry out filtering either in time domain or frequency domain. Freq. domain multiplication correspond to time domain (circular) convolution:

$$(x * h)[n] \stackrel{DTFT}{\longleftrightarrow} H(\Omega)X(\Omega)$$

$$\frac{1}{N}(x \circledast h)[n] \stackrel{DFT}{\longleftrightarrow} H[k]X[k]$$

What we have learned

Useful Signals and Their Fourier Transforms

Useful Signals and Their Fourier Transforms

Exercise II

• A LTI system has its frequency response $H(\Omega) = \frac{1}{1 - \frac{1}{2}e^{-j2\Omega}}$, find the system's unit sample response.

Exercise II

• A LTI system has its frequency response $H(\Omega) = \frac{1}{1 - \frac{1}{2}e^{-j2\Omega}}$, find the system's unit sample response.

If we use $h[n] = \frac{1}{2\pi} \int_0^{2\pi} H(\Omega) e^{j\Omega n} d\Omega$, the integration will be complicated. Since we know $H(\Omega) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\Omega n}$, if we consider $H(\Omega)$ as a result of the geometric series (with $0 < \alpha < 1$)

$$H(\Omega) = \sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \text{ we can see } \alpha = \frac{1}{2}e^{-j2\Omega}, \text{ therefore}$$

$$H(\Omega) = \sum_{n=0}^{\infty} \alpha^n = \sum_{n=0}^{\infty} \frac{1}{2}e^{-j\Omega 2n}$$

$$h[n] = \begin{cases} (\frac{1}{2})^{n/2}, n = 0, 2, 4, 6, 8, \dots, \infty \\ 0, \text{ otherwise} \end{cases}$$