
6.300 Signal Processing
Week 9, Lecture A:

Short Time Fourier Transform

• Spectrograms

• Overlap-add (streaming applications)

Quiz 2: Thursday November 7, 2-4pm 50-340
• Closed book except for two pages of notes (8.5’’ x 11’’ both sides)
• No electronic devices (No headphones, cell phones, calculators, …)
• Coverage up to Week #8 (DFT)
• practice quiz as a study aid, no HW # 9

Time-varying Signals
Real-world signals (i.e., speech, music, . . .) often have frequency content that
varies with time.

Fourier Transform: events that are local in time are global in frequency (and
vice versa). Sudden changes and local variations can be difficult to detect.

Example: 2 tunes
• cos0.wav
• cos1.wav

Can we tell them apart?

FFT of the two signals:

cos0 cos1

Short-Time Fourier Transform (STFT)
Short-time Fourier transforms (STFTs) represent the frequency content of a
long signal by that of a sequence of shorter DFTs.

• Each DFT is computed for a time interval of length N.
• Successive time intervals begin at increasingly later times.

Short-Time Fourier Transform (STFT)
Each window highlights frequencies from a different part of time.

Window 0 highlights the frequency of the first tone.
Window 1 contains contributions from the first two tones.

Window 2

What will be a good
way of presenting
(displaying) these
DFTs?

Spectrogram
A spectrogram displays the successive DFT magnitudes as columns in a
two-dimensional representation.

STFT and Spectrograms

Formally, we define the STFT of a signal x as:

𝑆𝑇𝐹𝑇 𝑥 [𝑚, 𝑘] = ෍

𝑛=0

𝑁−1

𝑥 𝑛 + 𝑚 × 𝑠 ∙ 𝑤[𝑛]𝑒−𝑗
2𝜋𝑘

𝑁 𝑛

Where:
• 𝑚 is a time index (window nymber, 𝑘

is a frequency index

• 𝑁 is the length of a window

• 𝑤[𝑛] is window function

• 𝑠 is “step size”

STFT and Spectrograms

𝑆𝑇𝐹𝑇 𝑥 [𝑚, 𝑘] = ෍

𝑛=0

𝑁−1

𝑥 𝑛 + 𝑚 × 𝑠 ∙ 𝑤[𝑛]𝑒−𝑗
2𝜋𝑘

𝑁
𝑛

The STFT is often visualized using a spectrogram, which is defined to be the magnitude
squared of the STFT.

The following images show spectrograms for the previous tone sequences.

Window_size=256, step_size=16, cos0.wav Window_size=256, step_size=32, cos1.wav

We can now clearly tell
the difference between
the two signals.

Example 2: Music Clip
This plot shows the magnitudes of DFT coefficients for a clip of music.

Can you identify the
piece?

Spectrogram
The spectrogram shows three parts: bass, melody, and harmony.

This score was created from
the spectrogram using
Lilypond (GNU project).

Example 3: Spectrograms in Telephony

In early telephone systems (circa 1880) clients were connected manually
through a switchboard.

The first automated systems (circa 1900) used pulses from a rotary dial to route calls via
complicated systems of relays.

Dual Tone Multi Frequency Signaling
In the 1950s, Bell Labs pioneered a system to route phone calls using tones.

This method is still in use today, especially as a way to collecting data:
“Please enter your 16-digit account number followed by the # key."

Dual Tone Multi Frequency Signaling
In the 1950s, Bell Labs pioneered a system to route phone calls using tones.

Pressing a button transmits two frequencies: one representing the row number and one
representing the column number (the last column is rarely used today).

Decoding the sequence of tones requires recognizing those two frequencies.

Spectrogram
Here is a spectrogram for a DTMF signal.

It clearly shows a sequence of frequency pairs.

Can we find out what
is this code?

Spectrogram
Here is a spectrogram for a DTMF signal.

The pair uniquely identifies the pushbutton number.

Check yourself
Choosing parameters for a spectrogram.

Consider here there is no overlap between
the windows

Check yourself
Choosing parameters for a spectrogram.

To make frequency errors less than 5 Hz, we need to analyze frequencies
into bins of ** width, or smaller.

A DFT breaks the full range of frequencies (44,100 Hz) into N bins, so
the bin width is **, and this bin width should be less than 10 Hz.
So N  **.

10 Hz

44100/N, 4410

A DFT breaks time into chunks of length **. To keep the chunks smaller
than 1/8 second, **< 1/8 so N should be less than **. N/fs, N/fs, 5512

𝑁0 𝑘: integer (frequency)

2𝜋0 Ω: rad/sample

fs0 𝑓: cycles/second (Hz)

Check yourself
Choosing parameters for a spectrogram.

Short-Time Fourier Transform
Short-Time Fourier transforms are useful for constructing spectrograms, to
visualize the frequency content of a signal as a function of time.

- convert important information into a single picture, process as image.

- next week, we will look at how spectrograms are used in analyzing speech.

Short-Time Fourier transforms are also useful for processing long signals,
such as those that are common in streaming applications.

Example
Consider a musical piece that contains three simultaneous “voices," each
playing a single sinusoidal tone.

Example
Consider a musical piece that contains three simultaneous “voices," each
playing a single sinusoidal tone.

The straightforward approach is to filter the DFT of the piece, passing only the frequencies
of interest. This straightforward approach requires accessing the entire piece before any
part is ready to play. This approach is problematic for streaming applications.

Streaming Algorithm 1
Divide a signal x[n] into a sequence of shorter signals of length N.

Assemble results for each window to form the output signal.

Filter data in each window by computing its DFT and zeroing components
outside passband.

How Effective is Algorithm 1?
Divide a signal x[n] into a sequence of shorter signals of length N.

It isolated the melody, but also added clicks!

Where does the clicks come
from? What is the problem
for this method?

participation question

How Effective is Algorithm 1?
There are at least two major problems with this approach.

• The length of (x * h)[n] is generally > length of x[n] or h[n]. Part of result
from each window should fall into an adjacent window(s).

• Even worse, the convolution will be circular if implemented with a DFT.
Results from window 1 that should fall into window 2 will alias back to
the beginning of window 1!

Overlap-Add Method
Avoid circular convolution artifacts and spill over problems by filling each
window with just s < N input samples and then zero-padding.

• If the length of h[n]  N−s + 1, then the length of h[n] convolved with s
samples of the input will be less than N => no circular convolution artifact.

• If the length of h[n]  N−s + 1, then the overlapping portions of adjacent
windows will accommodate spill over between windows.

Overlap-Add: Graphical Depiction

Then the output y[n] = y0[n] + y1[n] + y2[n] + · · · Hence overlap-add.

Filter Design

This design leads to algorithm 1, which has the clicking artifacts.
And our new idea was to have a shorter h[n] to prevent inter-window artifacts.

Design a filter to isolate the melody using the overlap-add method.

The filter should pass frequencies in the range fl  f  fh.

If we take the window length N = 8192, then h[n] has that same length.

Filter Design
How can we design a filter with 2048 points in time (n) but 8192 points in frequency (k)?

• Start by designing a filter H1[k] with length Nf = 2048. The filter should only pass
frequencies in the range fl f  fh.

• Convert H1[k] to the time domain using an inverse DFT. The length of the resulting h1[n]
will be Nf = 2048.

• Define a new filter h2[n] which is a version of h1[n] that is zero-padded to a new length
of N = 8192.

• Convert h2[n] to the frequency domain to get H2[k].

The filter H2[k] will have 8192 values of k but its time-domain representation h2[n] will
have just 2048 non-zero values.

Filter Design
Design a bandpass filter to extract 170-340 Hz frequency region from signal sampled
with fs = 44, 100 Hz with Nf = 2048.

Filter Design
Zero-pad to make filter length equal to window length N = 8192.

Listen to result: am_filtered.wav Significant improvement. No clicks.

Bass and harmony are faintly audible -
probably because of deviations from
ideal filters. Ripples are due to Gibb's
phenomenon.

Gibb’s Phenomenon
Ripples in frequency result from windowing in time.

Multiplying the unit sample response h[n] by a window function, convolves the desired
bandpass shape with the DT sinc - generating ripples.

Gibb’s Phenomenon
Triangular windows in time produce smaller ripples in frequency.

Filter Design
We can reduce the passband ripple by applying a triangular window (red).

Filter Design
We can reduce the passband ripple by applying a triangular window (red).

H2[k] is now a smoother function of k, rippling is greatly reduced.

Listen to result: am_triangular.wav

Bass and harmony are still
faintly audible (although not
as audible as for rectangular
window).

Gibb’s Phenomenon
Ripples in frequency result from windowing in time.

Filter Design
Better yet, try a Hann window (red).

Bass and harmony are still
faintly audible (although not
as audible as for rectangular
window).

Filter Design
Better yet, try a Hann window (red).

H2[k] is now even smoother.

Listen to result: am_Hann.wav

Bass and harmony no
longer audible.

Summary
Today we learned short-time Fourier Transform. A key feature of the DFT is
that it can be applied to parts of a signal.

• to visualize the change in frequency with time, and/or

• to process long signals, one chunk at a time.

We will now go to 4-370 for recitation & common hour

	Slide 1: 6.300 Signal Processing
	Slide 2: Time-varying Signals
	Slide 3: Short-Time Fourier Transform (STFT)
	Slide 4: Short-Time Fourier Transform (STFT)
	Slide 5: Spectrogram
	Slide 6: STFT and Spectrograms
	Slide 7: STFT and Spectrograms
	Slide 8: Example 2: Music Clip
	Slide 9: Spectrogram
	Slide 10: Example 3: Spectrograms in Telephony
	Slide 11: Dual Tone Multi Frequency Signaling
	Slide 12: Dual Tone Multi Frequency Signaling
	Slide 13: Spectrogram
	Slide 14: Spectrogram
	Slide 15: Check yourself
	Slide 16: Check yourself
	Slide 17: Check yourself
	Slide 18: Short-Time Fourier Transform
	Slide 19: Example
	Slide 20: Example
	Slide 21: Streaming Algorithm 1
	Slide 22: How Effective is Algorithm 1?
	Slide 23: How Effective is Algorithm 1?
	Slide 24: Overlap-Add Method
	Slide 25: Overlap-Add: Graphical Depiction
	Slide 26: Filter Design
	Slide 27: Filter Design
	Slide 28: Filter Design
	Slide 29: Filter Design
	Slide 30: Gibb’s Phenomenon
	Slide 31: Gibb’s Phenomenon
	Slide 32: Filter Design
	Slide 33: Filter Design
	Slide 34: Gibb’s Phenomenon
	Slide 35: Filter Design
	Slide 36: Filter Design
	Slide 37: Summary

