6.300 Signal Processing

Week 8, Lecture B:
Discrete Fourier Transform (ll)

e Resolution in Time and Frequency

* Circular convolution

Lecture slides are available on CATSOOQOP:

https://sigproc.mit.edu/fall24



Discrete Fourier Transform

A new Fourier representation for DT signals:

N-1
x[n] = X[k]ef%" Synthesis equation
k=0
N-1
1 _ 2k,
X[k] = N/, Xnl-e N Analysis equation
n=0

The DFT has a number of features that make it particular convenient
* [tis not limited to periodic signals.
* |tis discrete in both domains, making it computationally feasible

The FFT (Fast Fourier Transform) is an algorithm for computing the DFT efficiently.



Two Ways to Think About DFT

We can think about the DFT in two different ways:

1. Think about DFT as Fourier series of N samples of the signal, periodically
extended.

We can see why DFT of a single sinusoid is not concentrated in a single k component

Xolk
iDFT olk]
< N-1 |
— 2Ttk
x[n] = X[kle N "
k=0




Two Ways to Think About DFT

We can think about the DFT in two different ways:

1. Think about DFT as Fourier series of N samples of the signal, periodically
extended.

2. Think about DFT as the scaled Fourier transform of a “windowed” version of the
original signal.



DFT: Relation to DTFT

x[n]
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window scale: 1/N
ruln] = el DTET
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While sampling and scaling are important, it is the windowing that most
affects frequency content.



DFT: Relation to DTFT

Decreasing the analysis window N decreases frequency resolution.
N = 32

window scale: 1/N

Xo()
Tw[n] = z[njw(n] DTFT
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DFT: Relation to DTFT

Decreasing the analysis window N decreases frequency resolution.
N =24

window scale: 1/N

X (Q)
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DFT: Relation to DTFT

Decreasing the analysis window N decreases frequency resolution.
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DFT: Relation to DTFT

Decreasing the analysis window N decreases frequency resolution.

k
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Frequency Resolution

Frequency blurring is fundamental to the way DFT works. Longer windows
provide finer frequency resolution.
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The width of the central lobe is inversely related to window length N.



Spectral Blurring & Time/Frequency Tradeoff

However, longer windows provide less temporal resolution.

wln] = 1 0<<n<N
0 otherwise

— fundamental tradeoff between resolution in frequency and time.



Check yourself

Consider a waveform containing a single, pure sinusoid. This waveform
was recorded with a sampling rate of 8kHz, and we have 60 samples of
the waveform. Computing the DFT magnitudes, we find:
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What note is being played? How accurately can we tell?



Frequency Resolution

We only have N distinct samples of the DTFT. Q= % Q= Z;f
TT T T T 1T T T 1T T 1T
-N/, 0 N/, k: integer (frequency)
—1 0 T (): rad/sample
—fs/2 0 f?/z f: cycles/second (Hz)

We’re uniformly breaking up a range of 2t into N discrete samples: the spacing
between samples is 2it/N . The kt" coefficient is associated with Q = 2rtk/N

In Hz, the spacing between samples is fs/N . Thus, the k" coefficient is associated
with a frequency of f = kfs/N.

Trade-off: increasing frequency resolution necessarily requires considering more
samples of the signal (i.e., increasing N)



Check yourself

Consider a waveform containing a single, pure sinusoid. This waveform
was recorded with a sampling rate of 8kHz, and we have 60 samples of
the waveform. Computing the DFT magnitudes, we find:

05 T - k  8000x2
fs f= fsk _ =266.7 (Hz)
If & =1Hz - N 60
N = 8000 peak @ k = 2,—2
fs i ?
If 3 =01Hz Middle C:
N = 80000 _
014 m H Frequency resolution:
| f; 8000
0.0 —_ —
0 10 20 30 40 50 60 N B 60 =133.3

What note is being played? How accurately can we tell?

How many samples do we need to consider in order to be able to determine the
frequency of the tone to within 1Hz? Within 0.1Hz?



Frequency Resolution

Example: Determine the frequency content of the following sounds.
cello: DEb3.wav (fs =44, 100 Hz)



Frequency Resolution
Extract 1024 samples and calculate DFT.
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Frequency Resolution

Information about pitch is at low frequencies. Zoom in on k=0 to 25.
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Frequency Resolution

Information about pitch is at low frequencies. Zoom in on k=0 to 25.

z1[n] }Xl 0 \

0.4 0.10 -

0.2
0.08 »

0.0
0.06 -

[\f -l HMH.I o

o8- 0.00

V] 200 400 600 800 1000 V] 5 10 15 20 25

The biggest amplitude is at £k = 7.
The corresponding frequency (in Hz) follows from proportional reasoning:
fo ko ko 7
== = = —f, = — x 44100 = 301.46 Hz
fs N o Nfs 1024
This frequency is between D (293.66 Hz) and E-flat (311.13 Hz).



Frequency Resolution

Information about pitch is at low frequencies. Zoom in on k=0 to 25.

z1[n) }Xl [k]}
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The DFT provides integer resolution in k. Therefore, the peak at £ =7
could be off by as much as :I:%.

Ak 1/2
Af= 2N 25 44100 ~ 21.5H
F="N1=10m ™ z

Thus the frequency of the biggest peak is 280 < f, < 323, easily including
both D (293.66 Hz) and E-flat (311.13 Hz).



Improving Frequency Resolution

We can increase N to increase the number of analyzed frequencies.

Two methods to increase N:

e zero-padding (add zeros to increase length of input)
® [ncrease sample size

Can both methods help us resolve which note was played? What do you think?

Participation question for Lecture



Zero Padding

Original (N=1024).

1 [n]

:

.TTTT{




Zero Padding

What happens if we increase the length of the signal by adding zeros?
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Lengthening x; [n} with zeros stretches the DFT by inserting new coeffi-
cients of Xy between adjacent coefficients of Xj.



Zero Padding

Lengthen by a factor of 4 (N=4096).
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Zero Padding

Lengthen by a factor of 8 (N=8192).
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Zero Padding

The stem plots can be distracting when they are close together. (They
also take a long time to compute!) Replot using lines (but remember that
the signals are DT).



Zero Padding

Original (N=1024).
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Zero Padding

Lengthen by a factor of 2 (N=2048).
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Zero Padding

Lengthen by a factor of 4 (N=4096).
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Zero Padding

Lengthen by a factor of 8 (N=8192).
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Peak is now at & = 55.

ko 55
fo= s = gy, 44100 = 296 Hz

compared to our previous estimate of 301.46 Hz.
More importantly, frequencies are sampled more densely:

Ak 1/2
A = — P —_—
=N =sx10m

But we still cannot tell if the note was D or E-flat.

x 44100 =~ 2.7 Hz



Relation Between DFT and DTFT

Padding with zeros does not increase the length of the “effective” window.
Thus zero padding does not decrease the amount of frequency smearing.

o & Xu ()
2] DFT P | S
T ke
_N 0 N
2 )
sample: ) — %
window scale: 1/N
Y Y X‘L‘_} (Q)
Ty [n| = x[njwn] DTET
>
n | ()
—Tr 0 ™

0 N—-1

Zero padding adds frequencies but does not sharpen frequency resolution.



More Data

In order to increase frequency resolution, we need to include more data.



More Data

Original (N=1024).
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More Data

Lengthen by a factor of 2 (N=2048).
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More Data

Lengthen by a factor of 4 (N=4096).

x7(n

1.00

Q.75 7

0.50 1

—0.50 7

—0.75 1

025+
0.00 1
—0.25 4 A

Loog

2000

3000

4000

0.4 1

0.3

0.2

0.1

0.0 1

oo




More Data

Lengthen by a factor of 8 (N=8192).
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Switching again to line plots ...



More Data

Original (N=1024).
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More Data

Lengthen by a factor of 2 (N=2048).
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More Data

Lengthen by a factor of 4 (N=4096).
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More Data

Lengthen by a factor of 8 (N=8192).
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More Data

Lengthen by a factor of 16 (N=16,384).
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More Data

Lengthen by a factor of 32 (N=32,768).
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Clear peaks at £ = 217 and k£ = 228 (f = 292.04Hz and f = 306.85 Hz).
— close to D (293.66 Hz) and E-flat (311.13Hz): both notes are present!
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Notice that these are the second harmonics of lower frequencies.

— an octave lower than was suggested by the analysis with N = 1024.

The fundamental components were not clearly resolved with N = 1024 but

are clear with N = 32.768.




Summary: Frequency Resolution

Increasing the length of the analysis by zero padding increases the number
of frequency points (because sampling is more dense) but does not increase
frequency resolution (because windowing is unchanged).

To increase frequency resolution we must increase the number of data that
are analyzed.



Implementing Convolution with DFT

In addition to being useful for characterizing the frequency content of a
signal, the DFT can also be used to implement convolution.

Remember we can perform filtering in both the time and frequency
domains:

Time domain: z[n] —| hA[n] |— y[n] = (h*2z)[n]

Frequency domain:

X(Q) —s| HOQ) |—» Y(Q)=HQ)X(Q)

We can use DFT when working in frequency domain!



Regular Convolution

Multiplication in frequency domain correspond to convolution in time domain.
Let F(Q) = F, (Q) - Fp, (), find f[n].

1 .
fn] =§j F(Q) - e/ dQ =% ZnFa (Q) - F, () - e/ dQ

2m), fa @ (Z folm e‘j“m>°ef“"dﬂ - z fb[m]% F, (Q) - e/%(m-m) g
Mm=—c0 21

= Z folml faln—ml = (fy £,)[n]

DTFT
(x * h)[n] < > H(Q)X(Q)




Implementing Convolution with DFT
Let F[k] = E,[k] - F,[k], find f[n].

j2_7Tkn -« j2_7Tkn = 1 = 2T 2TC
FIKI ™™ = Eifk] - Fylk]e/ T 2N g . LN fy e/ | o5
k=0

But f,[n] was only defined for 0 < n < N, and n — m can fall outside that range.

How should we evaluate f,[n] when n is not between 0 and N-17



Implementing Convolution with DFT
Let F[k] = F,[k] - F,[k], find f[n].

N-— N-1

- 2 1o o\ 1
Z oS == Ofb[m]<ZFa[k]- W >> =Nz m] fopl(n —m)] (fb fap)[n]

m= k=0

The expression in the parenthesis looks like f,[n — m], but f,[n] was only defined for 0 <
n < N, and n — m can fall outside that range. How should we evaluate f,[n] when n is not
between 0 and N-17?

What is in the parenthesis is inverse DFT, remember iDFT gives the periodically extended
signal (slide #3 of today’s lecture).

So the expression in the parenthesis equal to f,,[n — m|, where f,,,[n] is a periodically

extended version of f,[n|: faln]
fap[nl Z fa[n + iN] = f,[n mod N]

l——OO

Circul 1%
Cgﬁscjfmon, =N2 m] ful(n — m)mod N) ——(fb®fa>[] .




Circular Convolution

Let us use an example to illustrate the difference between circular convolution & conventional

convolution. faln) foln]

11111 111 T (® f)ln Efb m] £,[(n — m) mod N]

0 4 0 4 = fpl0 ]fa[and N]"‘fb[ 1fal(n — 1) mod N|
+ fp2]lfal(n — 2) mod N | = (fp* fap)[n]

(o fo)ln Z folm] falnt = m] = £y [0 faln] + fy[11fuln = 11+ fy[2)faln 2]

fap(n]

(fb*fa) (fb® fa) n
bo0o00 Hia
0]f,In i o 1 il 0]f,[n mod N
fp[0]falnl ) ] - - fol01fal ! The parts of the
1 = many { | g conventional convolution
fol1lfaln — 1] fol1lfel(n = 1) mod N} that would fall outside
oo ? 0—-000- 7 _? mn . U_ s P
i - e 20 the DFT window “alias” to
fo[2]faln — 2] T b fu[2]fal(n —2) mod N | points inside the DFT
5 _' a ' 3 ° o - window.
Gl -3, = Pl e e
0 ! ! ! aliasing in time!
0 4 0 4




Different Ways to Consider Circular Convolution

(5O fo)ln z folm] full(r — m) mod N] = Z folm] fapln = m] = (i fup) ]

fa [n] fb [n] fap [n]
1 %000 1 $oc
0 4 0 4 0 4
The result of circular convolution is equivalent to:
(fo* fa) (H® fa)
{ dwas A - * A convolution of one of the signals with a periodically-
] 1) [} [— = N extended version of the other:
- LTI 142999 (fp® fo)ln] = (fb*fap)[n]r fap[n] = Ym=—w fa[n —mN]
—0—0-0 n - n
1 4 ¢o90e 1 4 o000
’ T N * A periodically-extended version (periodic in N) of the result
! n o n ) i
- . 3 - of convolving the two signals:
ot e oo il
= Iy (@ fo)ln Z (fo* fo)ln = m]




Implementing Convolution

With DTFT:

f DTFT
x[n] = X(Q)

and
DTFT
h[n] & H(Q)

then

DTFT
(x * h)[n] & HQ)X(Q)

With DFT:

g DFT
x[n] = X[k]

and

DFT
h|n] = H|[k]

then

DFT

~(x @ Wn] & H[kIX[K]




Summary

Today we discussed two critical issues in using the DFT.

* Frequency resolution - how the length of a signal determines the ability to
discriminate frequencies using the DFT.

* Circular Convolution - how the DFT can be used to carry out time domain
operations.
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