
6.300 Signal Processing
Week 8, Lecture B:

Discrete Fourier Transform (II)

• Resolution in Time and Frequency

• Circular convolution

Lecture slides are available on CATSOOP:

https://sigproc.mit.edu/fall24



Discrete Fourier Transform
A new Fourier representation for DT signals: 

The DFT has a number of features that make it particular convenient
• It is not limited to periodic signals. 
• It is discrete in both domains, making it computationally feasible 
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The FFT (Fast Fourier Transform) is an algorithm for computing the DFT efficiently.
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Two Ways to Think About DFT

We can think about the DFT in two different ways:

1. Think about DFT as Fourier series of N samples of the signal, periodically 
extended.

We can see why DFT of a single sinusoid is not concentrated in a single k component
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Two Ways to Think About DFT
We can think about the DFT in two different ways:

1. Think about DFT as Fourier series of N samples of the signal, periodically 
extended.

2. Think about DFT as the scaled Fourier transform of a “windowed” version of the 
original signal.
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Frequency Resolution
Frequency blurring is fundamental to the way DFT works. Longer windows 
provide finer frequency resolution.

The width of the central lobe is inversely related to window length N.
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Spectral Blurring & Time/Frequency Tradeoff

→ fundamental tradeoff between resolution in frequency and time.

However, longer windows provide less temporal resolution. 
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Check yourself

Consider a waveform containing a single, pure sinusoid. This waveform 
was recorded with a sampling rate of 8kHz, and we have 60 samples of 
the waveform. Computing the DFT magnitudes, we find:

What note is being played? How accurately can we tell?



Frequency Resolution

We only have N distinct samples of the DTFT.

Trade-off: increasing frequency resolution necessarily requires considering more 
samples of the signal (i.e., increasing N)
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We’re uniformly breaking up a range of 2π into N discrete samples: the spacing 
between samples is 2π/N . The kth coefficient is associated with Ω = 2πk/N

In Hz, the spacing between samples is fs/N . Thus, the kth coefficient is associated 
with a frequency of f = kfs/N. 
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Check yourself
Consider a waveform containing a single, pure sinusoid. This waveform 
was recorded with a sampling rate of 8kHz, and we have 60 samples of 
the waveform. Computing the DFT magnitudes, we find:

What note is being played? How accurately can we tell?
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Middle C?
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𝑓𝑠

𝑁
=

8000

60
= 133.3

How many samples do we need to consider in order to be able to determine the 
frequency of the tone to within 1Hz? Within 0.1Hz?
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Frequency Resolution
Example: Determine the frequency content of the following sounds.

cello: DEb3.wav (fs = 44, 100 Hz)
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Improving Frequency Resolution

Can both methods help us resolve which note was played? What do you think?

Participation question for Lecture
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Relation Between DFT and DTFT



More Data
In order to increase frequency resolution, we need to include more data.
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Summary: Frequency Resolution

Increasing the length of the analysis by zero padding increases the number
of frequency points (because sampling is more dense) but does not increase 
frequency resolution (because windowing is unchanged).

To increase frequency resolution we must increase the number of data that
are analyzed.



Implementing Convolution with DFT
In addition to being useful for characterizing the frequency content of a 
signal, the DFT can also be used to implement convolution.

Remember we can perform filtering in both the time and frequency 
domains:  

Time domain:

Frequency domain:

We can use DFT when working in frequency domain!



Regular Convolution

Let 𝐹 Ω = 𝐹𝑎 (Ω) ∙ 𝐹𝑏 (Ω), find 𝑓[𝑛]. 
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Multiplication in frequency domain correspond to convolution in time domain.



Implementing Convolution with DFT

Let 𝐹[𝑘] = 𝐹𝑎[𝑘] ∙ 𝐹𝑏[𝑘], find 𝑓[𝑛]. 

The expression in the parenthesis looks like 𝑓𝑎[𝑛 − 𝑚] since
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But 𝑓𝑎[𝑛] was only defined for 0 ≤ 𝑛 < 𝑁, and 𝑛 − 𝑚 can fall outside that range. 

How should we evaluate 𝑓𝑎[𝑛] when n is not between 0 and N−1?



Implementing Convolution with DFT
Let 𝐹[𝑘] = 𝐹𝑎[𝑘] ∙ 𝐹𝑏[𝑘], find 𝑓[𝑛]. 

The expression in the parenthesis looks like 𝑓𝑎 𝑛 − 𝑚 , but 𝑓𝑎[𝑛] was only defined for 0 ≤
𝑛 < 𝑁,  and 𝑛 − 𝑚 can fall outside that range. How should we evaluate 𝑓𝑎[𝑛] when n is not 
between 0 and N−1?
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What is in the parenthesis is inverse DFT, remember iDFT gives the periodically extended 
signal (slide #3 of today’s lecture). 

So the expression in the parenthesis equal to 𝑓𝑎𝑝 𝑛 − 𝑚 , where 𝑓𝑎𝑝 𝑛  is a periodically 

extended version of 𝑓𝑎 𝑛 :
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Circular Convolution
Let us use an example to illustrate the difference between circular convolution & conventional 
convolution.  

(𝑓𝑏∗ 𝑓𝑎) 𝑛 = 
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+ 𝑓𝑏[2]𝑓𝑎 𝑛 − 2  𝑚𝑜𝑑 𝑁 
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The parts of the 
conventional convolution 
that would fall outside 
the DFT window “alias” to 
points inside the DFT 
window.

aliasing in time!



Different Ways to Consider Circular Convolution

The result of circular convolution is equivalent to:  

(𝑓𝑏⊛ 𝑓𝑎) 𝑛 = 
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• A periodically-extended version (periodic in N) of the result 
of convolving the two signals:  
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• A convolution of one of the signals with a periodically-
extended version of the other:

(𝑓𝑏⊛ 𝑓𝑎) 𝑛 = (𝑓𝑏∗ 𝑓𝑎𝑝)[𝑛], 𝑓𝑎𝑝 𝑛 =  σ𝑚=−∞
∞ 𝑓𝑎[𝑛 − 𝑚𝑁]



Implementing Convolution

With DTFT:

If
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Summary
Today we discussed two critical issues in using the DFT.

• Frequency resolution - how the length of a signal determines the ability to 
discriminate frequencies using the DFT.

• Circular Convolution - how the DFT can be used to carry out time domain 
operations.
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