
6.300 Signal Processing
Week 6, Lecture B:

System Abstraction (II): Impulse Response and Convolution

• Unit Sample Signal and Unit Sample Response

• Discrete-Time Convolution

• Impulse Function and Impulse Response

• Continuous-Time Convolution

Lecture slides are available on CATSOOP:

https://sigproc.mit.edu/fall24



Last Time: The System Abstraction
Represent a system (physical, mathematical, or computational) by the way

it transforms an input signal into an output signal.

In this class, we will focus primarily on LTI (Linear, Time-Invariant) systems: 

• Linearity (additivity and homogeneity)
• Time invariance 

Such systems are both prevalent and mathematically tractable.



Multiple Representation of Systems

• Difference (Differential) Equation: represent system by algebraic constraints 

on samples

• Convolution: represent a system by its unit-sample response 

• Filter: represent a system by its amplification or attenuation of frequency 

components

We can represent a system in the following three ways:



Today: Representing a System by its Unit-Sample Response

• Difference (Differential) Equation: represent system by algebraic constraints 

on samples

• Convolution: represent a system by its unit-sample response 

• Filter: represent a system by its amplification or attenuation of frequency 

components

We can represent a system in the following three ways:



Representing a DT Signal as Sums of Delta’s

This signal can be represented as: 

Consider the following signal:

𝑥 𝑛 =

1,  𝑖𝑓 𝑛 = 0
−1, 𝑖𝑓 𝑛 = 3
−2,  𝑖𝑓 𝑛 = 4
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In general, we can represent a DT signal as a sum of scaled, shifted delta’s: 

Participation question for Lecture



Unit Sample Response

The unit sample response h[n] is the output of the system when the input is 
the unit sample signal δ[n].

If a system is linear and time-invariant, its input-output relation is completely 
specified by the system’s unit sample response h[n].

The output for more complicated inputs can be computed by superposition 
of the unit sample response.



Superposition
In general, we can represent a signal as a sum of scaled, shifted delta’s: 

𝑥 𝑛 = ෍

𝑚=−∞

∞

𝑥[𝑚] 𝛿 𝑛 − 𝑚

= ⋯ + 𝑥 −1 𝛿 𝑛 + 1 + 𝑥 0 𝛿 𝑛 + 𝑥 1 𝛿 𝑛 − 1 + 𝑥 2 𝛿 𝑛 − 2 + ⋯

If h[·] is the unit sample response of an LTI system, then the output of 
that system in response to this arbitrary input x[·] can be viewed as a sum 
of scaled, shifted unit sample responses:

𝑦 𝑛 = ෍

𝑚=−∞

∞

𝑥[𝑚] ℎ 𝑛 − 𝑚

= ⋯ + 𝑥 −1 ℎ 𝑛 + 1 + 𝑥 0 ℎ 𝑛 + 𝑥 1 ℎ 𝑛 − 1 + 𝑥 2 ℎ 𝑛 − 2 + ⋯



Structure of Superposition

If a system is linear and time-invariant (LTI) then its output is the sum of 
weighted and shifted unit sample responses.

LTI



Convolution
Response of an LTI system to an arbitrary input:

≡ (𝑥 ∗ ℎ) 𝑛

and the system’s unit sample response is h[·],

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘] ℎ 𝑛 − 𝑘

This operation is called convolution (verb form: convolve).

(𝑥 ∗ ℎ) 𝑛 ≡ ෍

𝑚=−∞

∞

𝑥[𝑚] ℎ 𝑛 − 𝑚Definition:

Note: It is customary (but confusing) to abbreviate this notation: 𝑥 ∗ ℎ 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]

we avoid using that in 6.300. 

Convolution operates on signals, not samples. The symbols 𝑥 and ℎ represent DT signals. 
Convolving 𝑥 with ℎ generates a new DT signal 𝑥 ∗ ℎ.



Unit Sample Response

𝑦 𝑛 = 𝑥 ∗ ℎ 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘] ℎ 𝑛 − 𝑘

It can be used to determine the response to any other input.

The unit-sample response is a complete description of an LTI system.

Given h[·] one can compute the response y[·] to any input x[·] :



Ways to Compute Convolution Result
Knowing the unit sample response h[·] to a LTI system, there are different 
ways to compute the output y[·] to an arbitrary input x[·] :

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘] ℎ 𝑛 − 𝑘

1. Directly compute the superposition result (sum the scaled 
and shifted responses)

2. Compute the convolution result at each particular n: flip and 
shift



Example
The unit sample response to a LTI system is ℎ 𝑛 = 𝛿 𝑛 + 𝛿 𝑛 − 1 + 𝛿 𝑛 − 2 , find the 
output y[n] to this system with an input 𝑥 𝑛 = 𝛿 𝑛 + 𝛿 𝑛 − 1 + 𝛿 𝑛 − 2  :

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘] ℎ 𝑛 − 𝑘

1. Directly compute the superposition result (sum the scaled and shifted responses):

ℎ 𝑛



Example

The unit sample response to a LTI system is ℎ 𝑛 = 𝛿 𝑛 + 𝛿 𝑛 − 1 + 𝛿 𝑛 − 2 , find the 
output y[n] to this system with an input 𝑥 𝑛 = 𝛿 𝑛 + 𝛿 𝑛 − 1 + 𝛿 𝑛 − 2  :

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘] ℎ 𝑛 − 𝑘

ℎ 𝑛

2. Compute the convolution result at each particular n: flip and shift



Check yourself

𝑥 𝑛 = (
2

3
)𝑛𝑢[𝑛] 𝑥 𝑛 = (

2

3
)𝑛𝑢[𝑛]



Continuous-Time LTI Systems
Superposition and convolution are of equal importance for CT systems.

A CT LTI system is completely characterized by its impulse response, much as a DT LTI 
system is completely characterized by its unit-sample response.

We have worked with the impulse (Dirac delta) function δ(t) previously. It’s defined in a 
limit as follows. Let p∆(t) represent a pulse of width ∆ and height 1/∆ so that its area is 1.

Then 

The impulse function can be used to break an arbitrary input x(t) into time-based 
components, much as δ[k] is used for discrete-time signals.



Impulse Response
An arbitrary CT signal can be represented by an infinite sum of infinitesimal impulses 
(which define an integral).

The result in CT is much like the result for DT:

Approximate an arbitrary signal x(t) (blue) as a sum of pulses p∆(t) (red).

and the limit of x∆(t) as ∆ → 0 will approximate x(t). 

𝑥 𝑛 = ෍

𝑚=−∞

∞

𝑥[𝑚] 𝛿 𝑛 − 𝑚



Impulse Response
If a system is linear and time-invariant (LTI), its input-output relation is completely 
specified by the system’s impulse response h(t). 

1. One can always find the impulse response of a LTI system.

2. Time invariance implies that shifting the input simply shifts the output.

4. Additivity implies that the response to a sum is the sum of responses. 

3. Homogeneity implies that scaling the input simply scales the output. 

The output of an LTI system can always be found by convolving: (x∗h)(t).



Impulse Response
The impulse response is a complete description of a CT LTI system. 

Given h(t) one can compute the response to any arbitrary input signal x(t).



Comparison of CT and DT Convolution

Convolution of CT signals is analogous to convolution of DT signals. 

𝑦 𝑛 = 𝑥 ∗ ℎ 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘] ℎ 𝑛 − 𝑘DT: 

𝑦(𝑡)  = 𝑥 ∗ ℎ (𝑡)  = න
−∞

∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏CT: 



Properties of Convolution(I) Commutativity:

(𝑔 ∗ ℎ) 𝑡 = (ℎ ∗ 𝑔) 𝑡

(𝑔 ∗ ℎ) 𝑡 ≡ න
−∞

∞

𝑔(𝜏) ∙ ℎ(𝑡 − 𝜏) 𝑑𝜏 (𝑔 ∗ ℎ)[𝑛] = ෍

𝑘=−∞

∞

𝑔 𝑘 ℎ[𝑛 − 𝑘]

𝑔 ∗ ℎ [𝑛]  = (ℎ ∗ 𝑔)[𝑛]

𝑙𝑒𝑡 𝜆 = 𝑡 − 𝜏, 𝑡ℎ𝑒𝑛 𝜏 = 𝑡 − 𝜆, 𝑑𝜏 = −𝑑𝜆
for 𝜏 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 − ∞ 𝑡𝑜 ∞, 𝜆 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 ∞ 𝑡𝑜 − ∞ 

𝑔 ∗ ℎ 𝑡 = න
∞

−∞

𝑔 𝑡 − 𝜆 ∙ ℎ 𝜆 (−𝑑𝜆)

= න
−∞

∞

𝑔 𝑡 − 𝜆 ∙ ℎ 𝜆 𝑑𝜆

= (ℎ ∗ 𝑔) 𝑡

(𝑔 ∗ ℎ)[𝑛] = ෍

𝑚=∞

−∞

𝑔 𝑛 − 𝑚 ℎ[𝑚]

𝑙𝑒𝑡 𝑚 = 𝑛 − 𝑘, 𝑡ℎ𝑒𝑛 𝑘 = 𝑛 − 𝑚,
for 𝑘 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 − ∞ 𝑡𝑜 ∞, 𝑚 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 ∞ 𝑡𝑜 − ∞ 

= ෍

𝑚=−∞

∞

𝑔 𝑛 − 𝑚 ℎ[𝑚] = (ℎ ∗ 𝑔)[𝑛]

𝑔(𝑡) ℎ(𝑡)𝛿(𝑡)
𝑔(𝑡)

(𝑔 ∗ ℎ)(𝑡)

ℎ(𝑡) 𝑔(𝑡)𝛿(𝑡)
ℎ(𝑡)

(ℎ ∗ 𝑔)(𝑡)



Properties of Convolution(II) Associativity:

𝑥 ∗ 𝑔 ∗ ℎ 𝑡 = (𝑥 ∗ 𝑔 ∗ ℎ ) 𝑡

( 𝑥 ∗ 𝑔 ∗ ℎ) 𝑡 ≡ න
−∞

∞

ℎ 𝑡 − 𝜆 𝑑𝜆 න
−∞

∞

𝑥(𝜏) ∙ 𝑔(𝜆 − 𝜏) 𝑑𝜏

𝑥 ∗ 𝑔 ∗ ℎ [𝑛]  = (𝑥 ∗ 𝑔 ∗ ℎ )[𝑛]

𝑙𝑒𝑡 𝜇 = 𝜆 − 𝜏, 𝑡ℎ𝑒𝑛 𝜆 = 𝜇 + 𝜏, 𝑑𝜆 = 𝑑𝜇
for 𝜆 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 − ∞ 𝑡𝑜 ∞, 𝜇 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 − ∞ 𝑡𝑜 ∞ 

( 𝑥 ∗ 𝑔 ∗ ℎ) 𝑡 = න
−∞

∞

𝑥 𝜏 𝑑𝜏 න
−∞

∞

ℎ 𝑡 − 𝜏 − 𝜇 ∙ 𝑔 𝜇 𝑑𝜇

= න
−∞

∞

𝑥 𝜏 (𝑔 ∗ ℎ)(𝑡 − 𝜏)𝑑𝜏

= (𝑥 ∗ 𝑔 ∗ ℎ ) 𝑡

( 𝑥 ∗ 𝑔 ∗ ℎ)[𝑛] = ෍

𝑚=−∞

∞

ℎ[𝑛 − 𝑚] ෍

𝑘=−∞

∞

𝑥 𝑘 𝑔[𝑚 − 𝑘]

( 𝑥 ∗ 𝑔 ∗ ℎ)[𝑛] = ෍

𝑘=−∞

∞

𝑥[𝑘] ෍

𝑙=−∞

∞

ℎ 𝑛 − 𝑘 − 𝑙 𝑔[𝑙]

𝑙𝑒𝑡 𝑙 = 𝑚 − 𝑘, 𝑡ℎ𝑒𝑛 𝑚 = 𝑘 + 𝑙,
for 𝑚 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 − ∞ 𝑡𝑜 ∞, 𝑙 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 − ∞ 𝑡𝑜 ∞ 

= (𝑥 ∗ 𝑔 ∗ ℎ )[𝑛]

𝑔(𝑡) ℎ(𝑡)𝑥(𝑡)
(𝑥 ∗ 𝑔)(𝑡)

( 𝑥 ∗ 𝑔 ∗ ℎ)(𝑡)

𝑥(𝑡) (𝑔 ∗ ℎ)(𝑡) (𝑥 ∗ 𝑔 ∗ ℎ )(𝑡)



Properties of Convolution(III) Distributivity over addition

𝑥 ∗ (𝑔 + ℎ) 𝑡 = 𝑥 ∗ 𝑔 𝑡 + (𝑥 ∗ ℎ) 𝑡

= න
−∞

∞

𝑥(𝜏)𝑔 𝑡 − 𝜏 𝑑𝜏 + න
∞

−∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

𝑥 ∗ (𝑔 + ℎ) [𝑛]  = 𝑥 ∗ 𝑔 [𝑛]  + (𝑥 ∗ ℎ)[𝑛]

𝑥 ∗ (𝑔 + ℎ) 𝑡

= න
−∞

∞

𝑥(𝜏) ∙ (𝑔 𝑡 − 𝜏 + ℎ(𝑡 − 𝜏)) 𝑑𝜏

= 𝑥 ∗ 𝑔 𝑡 + (𝑥 ∗ ℎ)(𝑡)

𝑥 ∗ (𝑔 + ℎ) 𝑛

= ෍

𝑘=−∞

∞

𝑥[𝑘] ∙ (𝑔 𝑛 − 𝑘 + ℎ 𝑛 − 𝑘 )

= ෍

𝑘=−∞

∞

𝑥 𝑘 ∙ 𝑔[𝑛 − 𝑘] + ෍

𝑘=−∞

∞

𝑥 𝑘 ∙ ℎ[𝑛 − 𝑘]

= 𝑥 ∗ 𝑔 [𝑛]  + (𝑥 ∗ ℎ)[𝑛]

𝑥 ∗ 𝑔 𝑡 + (𝑥 ∗ ℎ)(𝑡)



Applications of Convolution
Convolution is an important conceptual tool: it provides an important new 
way to think about the behaviors of systems. 

Example systems: microscopes and telescopes. 

Microscopes:

Images from even the best microscopes are blurred.



Microscope
A perfect lens transforms a spherical wave of light from the target into a 
spherical wave that converges to the image.  

Blurring is inversely related to 
the diameter of the lens.



Microscope
A perfect lens transforms a spherical wave of light from the target into a 
spherical wave that converges to the image.  

Blurring is inversely related to 
the diameter of the lens.

Numerical Aperture: 𝑁𝐴 = 𝑛𝑠𝑖𝑛𝜃. 𝑛 is refractive index

𝜃



Microscope
Blurring can be represented by convolving the image with the optical “point-
spread-function” (3D impulse response).  

Blurring is inversely related to 
the diameter of the lens.



Microscope
Blurring can be represented by convolving the image with the optical “point-
spread-function” (3D impulse response).

Blurring is inversely related to 
the diameter of the lens.𝜃



Hubble Space Telescope

Telescope blur can be represented by the convolution of blur due to atmospheric turbulence and blur due to 
mirror size.

Why build a space telescope? 
Hubble Space Telescope (1990-)

https://hubblesite.org/

Telescope images are blurred by the telescope lenses 
AND by atmospheric turbulence. 



Hubble Space Telescope
The main optical components of the Hubble Space Telescope are two mirrors.

https://hubblesite.org/

Hubble is a Cassegrain reflector telescope

The diameter of the primary mirror is 2.4 meters. Hubble’s first pictures of distant stars (May 20, 1990) 
were more blurred than expected.

expected point-spread function early Hubble image of distant star

the outer edge of the mirror was ground 
too flat by a depth of 4 microns!

Scientists immediately began experimenting with 
algorithms to resolve and make use of Hubble’s data and 
imagery, pushing forward image processing technology.



Hubble Space Telescope
Corrective Optics Space Telescope Axial Replacement (COSTAR): eyeglasses for Hubble!

https://hubblesite.org/

Astronauts completed major upgrades to the Hubble 
Space Telescope during a ten-day mission December 
1993.

Hubble images before and after COSTAR.

before after

Images from ground-based telescope and Hubble.



Summary

The unit-sample/impulse response is a complete description of an LTI system.

One can find the response to an arbitrary input signal by convolving the 
input signal with the impulse response.

The impulse response is an especially useful description of some types of 
systems, e.g., optical systems, where blurring is an important figure of merit.

Convolution
𝑦 𝑛 = 𝑥 ∗ ℎ 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘] ℎ 𝑛 − 𝑘DT: 

𝑦(𝑡)  = 𝑥 ∗ ℎ (𝑡)  = න
−∞

∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏CT: 
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