6.300 Signal Processing

Week 6, Lecture A: Systems

- System Abstraction
- Linearity and Time Invariance

Lecture slides are available on CATSOOP: https://sigproc.mit.edu/fall24

From Signal to Systems: The System Abstraction

Represent a system (physical, mathematical, or computational) by the way it transforms an input signal into an output signal.

Example: Mass and Spring

Example: Mass and Spring

Example: Tanks

Example: Tanks

Example: Cell Phone System

Example: Cell Phone System

Signals and Systems: Widely Applicable

The Signals and Systems approach has broad applications: electrical, mechanical, optical, acoustic, biological, financial, ...

The System Abstraction

Many applications of signal processing can be formulated as systems that convert an input signal into an output signal.

Examples:

• **audio**: equalization, noise reduction, reverberation reduction, echo cancellation, pitch shift (auto-tune)

- image: smoothing, edge enhancement, unsharp masking, feature detection
- video: image stabilization, motion magnification

Audio: Vocal removal

Image: Denoising

Video: Motion magnification

(a) Input

(b) Magnified

Example: Running Average

Noisy sensor data can be "smoothed" to reduce the impact of noise on the signal. For example, consider the following data on the left, consisting of a sinusoid corrupted with noise:

Consider the case where this signal is the input to a system described as "three point averager", whose output at time n is the average of three consecutive input samples:

$$y[n] = \frac{x[n-1] + x[n] + x[n+1]}{3}$$

Example System: Three-point Averaging

The output at time *n* is average of inputs at times *n*-1, *n*, and *n*+1.

Think of this process as a system with input x[n] and output y[n].

Multiple Representation of Systems

We can represent a system in the following three ways:

- Difference Equation: represent system by algebraic constraints on samples
- Convolution: represent a system by its unit-sample response
- Filter: represent a system by its amplification or attenuation of frequency components

Linear, Time-Invariant(LTI) System

Arbitrary systems are arbitrarily difficult to describe.

Fortunately, many useful systems have two important properties:

- Linearity (additivity and homogeneity)
- Time invariance

In 6.300, we will focus on systems that have both of these properties, which are called LTI systems.

Additivity

A system is additive if its response to a sum of inputs is equal to the sum of its responses to each input taken one at a time.

the system is additive if

$$x_1[n] + x_2[n] \longrightarrow$$
 system $\longrightarrow y_1[n] + y_2[n]$

is true for all possible inputs.

Homogeneity

A system is homogeneous if multiplying its input by a constant multiplies its output by the same constant.

Given
$$x_1[n] \longrightarrow$$
 system $\longrightarrow y_1[n]$

the system is homogeneous if

$$\alpha x_1[n] \longrightarrow \text{system} \longrightarrow \alpha y_1[n]$$

is true for all α and all possible inputs.

Linearity

A system is linear if its response to a weighted sum of inputs is equal to the weighted sum (i.e. superposition) of its responses to each of the inputs.

the system is linear if

$$\alpha x_1[n] + \beta x_2[n] \longrightarrow \text{system} \longrightarrow \alpha y_1[n] + \beta y_2[n]$$

is true for all α and β and all possible inputs.

Time-Invariance

A system is time-invariant if delaying the input to the system simply delays the output by the same amount of time.

Given
$$x[n] \longrightarrow$$
 system $\longrightarrow y[n]$

the system is time-invariant if

$$x[n-n_0] \longrightarrow$$
 system $\longrightarrow y[n-n_0]$

is true for all n_0 and for all possible inputs.

Check yourself (I)

Consider a system represented by the following difference equation:

y[n] = x[n] + x[n-1] (for all n)

is this system linear?

If
$$x_1[n] \rightarrow \text{system} \rightarrow y_1[n] \implies y_1[n] = x_1[n] + x_1[n-1]$$

and $x_2[n] \rightarrow \text{system} \rightarrow y_2[n] \implies y_2[n] = x_2[n] + x_2[n-1]$
Let $x[n] = \alpha x_1[n] + \beta x_2[n]$ then $y[n] = x[n] + x[n-1]$
 $= (\alpha x_1[n] + \beta x_2[n]) + (\alpha x_1[n-1] + \beta x_2[n-1]))$
 $= \alpha (x_1[n] + x_1[n-1]) + \beta (x_2[n] + x_2[n-1]))$
 $= \alpha y_1[n] + \beta y_2[n]$

 \implies The system is linear.

Check yourself (II)

Consider a system represented by the following difference equation:

y[n] = x[n] + 1 (for all n)

is this system linear?

If $x_1[n] \rightarrow \text{system} \rightarrow y_1[n] \implies y_1[n] = x_1[n] + 1$ and $x_2[n] \rightarrow \text{system} \rightarrow y_2[n] \implies y_2[n] = x_2[n] + 1$ Let $x[n] = \alpha x_1[n] + \beta x_2[n]$ then y[n] = x[n] + 1 $= (\alpha x_1[n] + \beta x_2[n]) + 1$ $\neq \alpha y_1[n] + \beta y_2[n]$ $\alpha y_1[n] + \beta y_2[n] = \alpha (x_1[n] + 1) + \beta (x_2[n] + 1)$

 \Rightarrow The system is NOT linear.

Check yourself (III)

Consider a system represented by the following difference equation:

 $y[n] = x[n] \times x[n-1]$ (for all n)

is this system linear?

Participation question for Lecture

If
$$x_1[n] \rightarrow \text{system} \rightarrow y_1[n] \implies y_1[n] = x_1[n] \times x_1[n-1]$$

and $x_2[n] \rightarrow \text{system} \rightarrow y_2[n] \implies y_2[n] = x_2[n] \times x_2[n-1]$
Let $x[n] = \alpha x_1[n] + \beta x_2[n]$ then $y[n] = x[n] \times x[n-1]$
 $= (\alpha x_1[n] + \beta x_2[n]) \times (\alpha x_1[n-1] + \beta x_2[n-1])$
 $\neq \alpha y_1[n] + \beta y_2[n]$
 $\alpha y_1[n] + \beta y_2[n] = \alpha (x_1[n] \times x_1[n-1]) + \beta (x_2[n] \times x_2[n-1])$

 \Rightarrow The system is **NOT** linear.

Check yourself (IV)

Consider a system represented by the following difference equation:

y[n] = nx[n] (for all n)

is this system linear?

If $x_1[n] \rightarrow \text{system} \rightarrow y_1[n] \implies y_1[n] = nx_1[n]$ and $x_2[n] \rightarrow \text{system} \rightarrow y_2[n] \implies y_2[n] = nx_2[n]$ Let $x[n] = \alpha x_1[n] + \beta x_2[n]$ then y[n] = nx[n] $= n(\alpha x_1[n] + \beta x_2[n])$ $= \alpha \cdot nx_1[n] + \beta \cdot nx_2[n]$ $= \alpha y_1[n] + \beta y_2[n]$

→ The system is linear.

Check yourself (V)

Consider a system represented by the following difference equation:

y[n] = nx[n] (for all n)

is this system time-invariant?

If
$$x_1[n] \rightarrow \text{system} \rightarrow y_1[n] \implies y_1[n] = nx_1[n]$$

Let $x_1[n] = x[n - n_0] \implies y_1[n] = nx[n - n_0]$
But based on $y[n] = nx[n] \qquad y[n - n_0] = (n - n_0) \cdot x[n - n_0]$
 $y[n - n_0] \neq y_1[n]$

The system is **NOT** time-invariant.

Represent a LTI system with Difference Equations

A system is linear and time-invariant if it can be expressed in terms of a linear difference equation with constant coefficients of the following form:

$$\sum_{m} C_{m} y[n-m] = \sum_{k} d_{k} x[n-k]$$

e.g. 3-pt averager: $y[n] = \frac{x[n-1] + x[n] + x[n+1]}{3}$

Linearity: weighted sum of outputs equal to weighted sum of inputs

$$\sum_{m} C_m \left(\alpha y_1[n-m] + \beta y_2[n-m] \right) = \sum_{k} d_k \cdot \alpha x_1 \left[n-k \right] + \sum_{k} d_k \cdot \beta x_2 \left[n-k \right]$$

Time invariance: delaying an input delays its output

$$\sum_{m} C_{m} y[n - n_{0} - m] = \sum_{k} d_{k} x[n - n_{0} - k]$$

The three-point averager is a linear, time-invariant system, but the system y[n] = x[n] + 1 is not a LTI system.

Linear Differential Equations with Constant Coefficients

If a continuous-time system can be described by a linear differential equation with constant coefficients as follows, then the system is LTI.

$$\sum_{l} c_{l} \frac{d^{l}}{dt^{l}} y(t) = \sum_{m} d_{m} \frac{d^{m}}{dt^{m}} x(t)$$

Additivity: output of sum is sum of outputs.

$$\sum_{l} c_{l} \frac{d^{l}}{dt^{l}} (y_{1}(t) + y_{2}(t)) = \sum_{m} d_{m} \frac{d^{m}}{dt^{m}} (x_{1}(t) + x_{2}(t))$$

Homogeneity: scaling an input scales its output.

$$\sum_{l} c_{l} \frac{d^{l}}{dt^{l}} (\alpha y(t)) = \sum_{m} d_{m} \frac{d^{m}}{dt^{m}} (\alpha x(t))$$

Time invariance: delaying an input delays its output

$$\sum_{l} c_l \frac{d^l}{dt^l} y(t - t_0) = \sum_{m} d_m \frac{d^m}{dt^m} x(t - t_0)$$

Multiple Representation of LTI Systems

Next: Representing a system by its unit-sample response

- Difference (differential) Equation: represent system by algebraic constraints on samples
- Convolution: represent a system by its unit-sample response
- Filter: represent a system as by its amplification or attenuation of frequency

components

Summary

The concept of "system" to represent the process/method to manipulate signals:

Linear, Time-Invariant Systems

Three ways of representing a LTI system:

- Difference (differential) Equation: represent system by algebraic constraints on samples
- Convolution: represent a system by its unit-sample response
- Filter: represent a system as by its frequency response

We will now go to 4-370 for recitation & common hour