6.300 Signal Processing

Week 5, Lecture A: Quiz Review-Properties of Fourier Series

Lecture slides are available on CATSOOP:

https://sigproc.mit.edu/fall24

Quiz 1: Thursday October 3, 2-4pm 50-340

- Closed book except for one page of notes $(8.5'' \times 11''$ both sides)
- No electronic devices (No headphones, cell phones, calculators, ...)
- Coverage up to Week #3 (DTFS) today's lecture and recitation also useful
- practice quiz as a study aid, no HW#4

Fourier Representations

Signals: periodic vs aperiodic continuous vs discrete

Synthesis Equation: reconstruct signal from Fourier components Analysis Equation: Finding the Fourier components

CT signals, DT signals, sampling

A CT signal $x(t) = cos(\omega t)$ sampled at $t = n\Delta T$, the resulting DT signal $x[n] = cos(\Omega n)$ with $\Omega = \omega \Delta T$

$$
x(t) = \cos(\omega t) \qquad \qquad \frac{\Omega = \omega/\mathsf{f}_{\mathsf{s}}}{\sqrt{\mathsf{f}_{\mathsf{s}}} = \frac{1}{\Delta T}} \qquad x[n] = \cos(\Omega n)
$$

Aliasing and Nyquist frequency:

$$
x[n] = \cos(\Omega n) = \cos((\Omega + 2\pi)n) = \cos((\Omega + 2k\pi)n)
$$

Nyquist frequency: $\frac{1}{2}$ $rac{1}{2}f_s$

- \triangleright when the highest frequency of a signal is less than the Nyquist frequency, the resulting DT signal is free of aliasing.
- \triangleright Or, the sampling rate need to be larger than twice the highest frequency in the signal to prevent aliasing

Properties (I): Linearity

• Consider $y(t) = Ax_1(t) + Bx_2(t)$, where $x_1(t)$ and $x_2(t)$ are periodic in T. What are the CTFS coefficients $Y[k]$, in terms of $X_1[k]$ and $X_2[k]$?

First, $y(t)$ must also be periodic in T

$$
Y[k] = \frac{1}{T} \int_{T} y(t)e^{-j\frac{2\pi kt}{T}} dt = \frac{1}{T} \int_{T} (Ax_1(t) + Bx_2(t))e^{-j\frac{2\pi kt}{T}} dt
$$

= $A\frac{1}{T} \int_{T} x_1(t)e^{-j\frac{2\pi kt}{T}} dt + B\frac{1}{T} \int_{T} x_2(t)e^{-j\frac{2\pi kt}{T}} dt$

 $= AX_1[k] + BX_2[k]$

If $y(t) = Ax_1(t) + Bx_2(t)$, then $Y[k] = AX_1[k] + BX_2[k]$

Properties (II): Time flip(reversal)

• Consider $y(t) = x(-t)$, where $x(t)$ is periodic in T. What are the CTFS coefficients $Y[k]$, in terms of $X[k]$?

First, $y(t)$ must also be periodic in T

$$
x(t) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}} \qquad y(t) = x(-t) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi k(-t)}{T}} = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi(-k)t}{T}}
$$

Let $m = -k$

$$
y(t) = x(-t) = \sum_{m=\infty}^{-\infty} X[-m]e^{j\frac{2\pi mt}{T}} = \sum_{m=-\infty}^{\infty} X[-m]e^{j\frac{2\pi mt}{T}}
$$

Since we know

$$
y(t) = \sum_{m = -\infty}^{\infty} Y[m]e^{j\frac{2\pi mt}{T}} \longrightarrow Y[k] = X[-k]
$$

$$
If y(t) = x(-t), Y[k] = X[-k]
$$

Properties (III): Real-valued periodic signal

If $f(t)$ is real valued periodic signal:

$$
F[k] = \frac{1}{T} \int_{T} f(t)e^{-j\frac{2\pi kt}{T}}dt \qquad F[-k] = \frac{1}{T} \int_{T} f(t)e^{j\frac{2\pi kt}{T}}dt
$$

$$
F^{*}[-k] = \frac{1}{T} \int_{T} f(t)e^{-j\frac{2\pi kt}{T}}dt
$$

$$
= F[k]
$$

If $f(t)$ is real valued periodic signal, $F[k] = F^*[-k]$

How to go from trig form to CE form for CTFS

Substitute complex exponentials for trigonometric functions.

$$
f(t) = c_0 + \sum_{k=1}^{\infty} \left(c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t) \right)
$$

\n
$$
= c_0 + \sum_{k=1}^{\infty} \left(c_k \frac{1}{2} \left(e^{jk\omega_o t} + e^{-jk\omega_o t} \right) + d_k \frac{1}{2j} \left(e^{jk\omega_o t} - e^{-jk\omega_o t} \right) \right)
$$

\n
$$
= c_0 + \sum_{k=1}^{\infty} \frac{c_k - jd_k}{2} e^{jk\omega_o t} + \sum_{k=1}^{\infty} \frac{c_k + jd_k}{2} e^{-jk\omega_o t}
$$

\n
$$
= c_0 + \sum_{k=1}^{\infty} \frac{c_k - jd_k}{2} e^{jk\omega_o t} + \sum_{k=-1}^{-\infty} \frac{c_{-k} + jd_{-k}}{2} e^{+jk\omega_o t}
$$

\n
$$
f(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t} \text{ where } a_k = \begin{cases} \frac{1}{2} (c_k - jd_k) & \text{if } k > 0 \\ c_0 & \text{if } k = 0 \\ \frac{1}{2} (c_{-k} + jd_{-k}) & \text{if } k < 0 \end{cases}
$$

The trig form of the Fourier series (top of page) has an equivalent form with complex exponentials (red).

Let's try it!

$$
e^{j\theta} = \cos\theta + j\sin\theta
$$

$$
e^{-j\theta} = \cos\theta - j\sin\theta
$$

$$
cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}
$$

$$
\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} = -j\frac{e^{j\theta} - e^{-j\theta}}{2}
$$

Slide #11 of Lecture 02B

Properties (IV): Symmetric and Antisymmetric Parts

• If $f(t) = f_S(t) + f_A(t)$ is a real valued signal and periodic in time with fundamental period T, what are the Fourier coefficients of $f_S(\cdot)$ and $f_4(\cdot)$, in terms of F[k]?

If $f(t)$ is real valued periodic signal, $F[k] = F^*[-k]$

$$
f_S(t) = \frac{f(t) + f(-t)}{2} \xrightarrow{\text{time flip}} F_S[k] = \frac{F[k] + F[-k]}{2} = \frac{F[k] + F^*[k]}{2} = \frac{2Re(F[k])}{2} = Re(F[k])
$$

$$
f_A(t) = \frac{f(t) - f(-t)}{2} \xrightarrow{\text{time flip}} F_A[k] = \frac{F[k] - F[-k]}{2} = \frac{F[k] - F^*[k]}{2} = \frac{2j \cdot Im(F[k])}{2} = j \cdot Im(F[k])
$$

The real part of $F[k]$ comes from the symmetric part of the signal, the imaginary part of $F[k]$ comes from the antisymmetric part of the signal

Symmetric and Antisymmetric Parts in CTFS

- c_k 's (cosines) alone only represent the symmetric part of the signal.
- d_k 's (sines) alone only represent the antisymmetric part of the signal.

$$
f_S(t) = \frac{f(t) + f(-t)}{2} \qquad f_A(t) = \frac{f(t) - f(-t)}{2}
$$

The symmetric part shows up in the c_k coefficients, and the antisymmetric part shows up in the d_k coefficients.

 $\cos(x)$

Properties (V): Time Shift

• Consider $y(t) = x(t - t_0)$, where x is periodic in T. What are the CTFS coefficients $Y[k]$, in terms of $X[k]$?

$$
Y[k] = \frac{1}{T} \int_{T} y(t)e^{-j\frac{2\pi kt}{T}} dt = \frac{1}{T} \int_{T} x(t-t_0)e^{-j\frac{2\pi kt}{T}} dt \qquad \text{let } u = t - t_0, \\
= \frac{1}{T} \int_{T} x(u)e^{-j\frac{2\pi k(u+t_0)}{T}} du \\
= \frac{1}{T} \int_{T} x(u)e^{-j\frac{2\pi ku}{T}} e^{-j\frac{2\pi kt_0}{T}} du \\
= e^{-j\frac{2\pi kt_0}{T}} \frac{1}{T} \int_{T} x(u)e^{-j\frac{2\pi ku}{T}} du = e^{-j\frac{2\pi kt_0}{T}} X[k]
$$

Each coefficient $Y[k]$ in the series for $y(t)$ is a constant $e^{-jk\omega_0\tau}$ times the corresponding coefficient $X[k]$ in the series for $x(t)$.

Properties (VI): Time Derivative

• Consider $y(t) =$ \boldsymbol{d} $\frac{dt}{dt}$ $x(t)$, where $x(t)$ and $y(t)$ are periodic in T . What are the CTFS coefficients $Y[k]$, in terms of $X[k]$?

Start with the synthesis equation:

$$
x(t) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}}
$$

Then, from the definition of $y(\cdot)$, we have:

$$
y(t) = \dot{x}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{k=-\infty}^{\infty} X[k] e^{j\frac{2\pi kt}{T}} \right) = \sum_{k=-\infty}^{\infty} \left(j\frac{2\pi k}{T} X[k] \right) e^{j\frac{2\pi kt}{T}} = \sum_{k=-\infty}^{\infty} Y[k] e^{j\frac{2\pi kt}{T}}
$$

From this form, we can see that $Y[k] = j\frac{2\pi k}{T}X[k]$.

Properties of Fourier Transforms

Continuous-Time Fourier Transform Discrete-Time Fourier Transform

Exercise I

Let $Y[k]$ represent the Fourier series coefficients of the following signal: $y(t)$

Which of the following is/are true?

- 1. $Y[k] = 0$ if k is even
- 2. $Y[k]$ is real-valued
- 3. $|Y[k]|$ decreases with k^2
- 4. there are an infinite number of non-zero $Y[k]$

Participation question for Lecture

What is the relationship between the two following signals?

The triangle waveform is the integral of the square wave.

Exercise I

Let $Y[k]$ represent the Fourier series coefficients of the following signal: $y(t)$

Which of the following is/are true?

- 1. $Y[k] = 0$ if k is even
- 2. $Y[k]$ is real-valued
- 3. |*Y*[k]| decreases with k^2
- 4. there are an infinite number of non-zero $Y[k]$

Exercise II

Ben Bitdiddle created a signal $x_0[n]$ representing the MIT dome, but he only saved the DTFS coefficients $X_0[k]$ (and not the original signal). However, he knew that one period of the original signal (which is periodic in $N = 51$) looked like this:

Additional slides to show the properties with DTFS

Properties of DTFS: Linearity

• Consider $y[n] = Ax_1[n] + Bx_2[n]$, where $x_1[n]$ and $x_2[n]$ are periodic in N. What are the DTFS coefficients $Y[k]$, in terms of $X_1[k]$ and $X_2[k]$?

First, $y[n]$ must also be periodic in N

$$
Y[k] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} y[n]e^{-j\frac{2\pi}{N}kn} = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} (Ax_1[n] + Bx_2[n])e^{-j\frac{2\pi}{N}kn}
$$

= $A \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x_1[n]e^{-j\frac{2\pi}{N}kn} + B \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x_2[n]e^{-j\frac{2\pi}{N}kn}$
= $AX_1[k] + BX_2[k]$

If $y[n] = Ax_1[n] + Bx_2[n]$, then $Y[k] = AX_1[k] + BX_2[k]$

Properties of DTFS: Time flip

• Consider $y[n] = x[-n]$, where $x[n]$ is periodic in N. What are the DTFS coefficients $Y[k]$, in terms of $X[k]$?

First, $y[n]$ must also be periodic in N

$$
Y[k] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} y[n]e^{-j\frac{2\pi k}{N}n} = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x[-n]e^{-j\frac{2\pi k}{N}n}
$$

Let $m = -n$

$$
Y[k] = \frac{1}{N} \sum_{m=-n_0}^{-(n_0+N-1)} x[m]e^{-j\frac{2\pi k}{N}(-m)}
$$

=
$$
\frac{1}{N} \sum_{m=-n_0}^{-n_0-N+1} x[m]e^{-j\frac{2\pi(-k)}{N}m} = X[-k]
$$

If $y[n] = x[-n]$, then $Y[k] = X[-k]$

Flipping in time flips in frequency.

Properties of DTFS: Time Shift

• Consider $y[n] = x[n - m]$, where $x[n]$ is periodic in N, m is an integer. What are the DTFS coefficients $Y[k]$, in terms of $X[k]$?

First, $y[n]$ must also be periodic in N

$$
Y[k] = \frac{1}{N} \sum_{n=n_0}^{n_0 + N - 1} y[n] e^{-j\frac{2\pi k}{N}n} = \frac{1}{N} \sum_{n=n_0}^{n_0 + N - 1} x[n - m] e^{-j\frac{2\pi k}{N}n}
$$

Let
$$
l = n - m
$$
, then $n = l + m$
\n
$$
Y[k] = \frac{1}{N} \sum_{l=n_0-m}^{n_0-m+N-1} x[l]e^{-j\frac{2\pi k}{N}(l+m)} = e^{-j\frac{2\pi k}{N}m} \cdot \frac{1}{N} \sum_{l=n_0-m}^{n_0-m+N-1} x[l]e^{-j\frac{2\pi k}{N}l}
$$
\n
$$
= e^{-j\frac{2\pi k}{N}m} \cdot X[k]
$$

$$
If y[n] = x[n-m], then Y[k] = e^{-j\frac{2\pi km}{N}}X[k]
$$

Shifting in time changes phase of Fourier Series Coefficient.

Properties of DTFS: Complex-conjugate Coefficients

If x[n] is real-valued periodic signal, $X[k] = X^*[-k]$.

$$
X[k] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x[n]e^{-j\frac{2\pi k}{N}n} \qquad X[-k] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x[n]e^{-j\frac{2\pi(-k)}{N}n}
$$

$$
X[-k] = \frac{1}{N} \sum_{n=n_0}^{n_0 + N - 1} x[n] e^{j\frac{2\pi k}{N}n}
$$

$$
X^*[-k] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x[n] e^{-j\frac{2\pi k}{N}n} = X[k]
$$

Properties of DTFS: Symmetric and Antisymmetric Parts

• A real-valued signal $x[n]$ written in terms of the symmetric and antisymmetric parts: $x[n] = x_S[n] + x_A[n]$

$$
x_S[n] = \frac{1}{2} (x[n] + x[-n]) \xleftarrow{\text{DTFS}} \frac{1}{2} (X[k] + X[-k]) = \frac{1}{2} (X[k] + X^*[k])
$$

= Re(X[k])

$$
x_A[n] = \frac{1}{2}(x[n] - x[-n]) \left\{ \xrightarrow{\text{DFFS}} \frac{1}{2}(X[k] - X[-k]) = \frac{1}{2}(X[k] - X^*[k])\right\}
$$

$$
= j \cdot Im(X[k])
$$

The real part of $X[k]$ comes from the symmetric part of the signal, the imaginary part of $X[k]$ comes from the antisymmetric part of the signal