6.300 Signal Processing

Week 5, Lecture A:
Quiz Review-Properties of Fourier Series

Lecture slides are available on CATSOOP:
https://sigproc.mit.edu/fall24

Quiz 1: Thursday October 3, 2-4pm 50-340

* Closed book except for one page of notes (8.5”” x 11" both sides)

* No electronic devices (No headphones, cell phones, calculators, ...)
 Coverage up to Week #3 (DTFS) today’s lecture and recitation also useful
e practice quiz as a study aid, no HW#4




Fourier Representations

Signals: periodic vs aperiodic Synthesis Equation: reconstruct signal from Fourier components
continuous vs discrete Analysis Equation: Finding the Fourier components

Reprgsentmg continuous time signal Representing discrete time signal

requires frequency contents from X[k] & X(Q) periodic
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CT signals, DT signals, sampling

A CT signal x(t) = cos(wt) sampled at t = nAT, the resulting DT signal x[n] = cos(Qn)
with Q = wAT
Q = o/f,
x(t) = cos(wt) s x[n] = cos(Qn)

Aliasing and Nyquist frequency:
x[n] = cos(Qn) = cos((Q + 2m)n) = cos((Q + 2km)n)

Nyquist frequency: %fs
» when the highest frequency of a signal is less than the Nyquist

frequency, the resulting DT signal is free of aliasing.

» Or, the sampling rate need to be larger than twice the highest
frequency in the signal to prevent aliasing



Properties (l): Linearity

* Consider y(t) = Ax{(t) + Bx,(t), where x{(t) and x,(t) are
periodic in 7. What are the CTFS coefficients Y|[k], in terms of X, | k]
and X, k] ?



Properties (I1): Time flip(reversal)

* Consider y(t) = x(—t), where x(t) is periodic in 7. What are the
CTFS coefficients Y [k], in terms of X|k]?



Properties (lll): Real-valued periodic signal

If £(t) is real valued periodic signal:



How to go from trig form to CE form for CTFS

Substitute complex exponentials for trigonometric functions. Let’s try it!
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The trig form of the Fourier series (top of page) has an equivalent form

with complex exponentials (red). Slide #11 of Lecture 02B



Properties (IV): Symmetric and Antisymmetric Parts

o If f(t) = fs(t) + f4(t) is a real valued signal and periodic in time with
fundamental period T, what are the Fourier coefficients of f<(-) and

f4(9), in terms of F[k]?



Symmetrlc and Antlsymmetrlc Parts in CTFS

. cos(x) o«
() =co+ Z cx cos(kwot) + dy sin(kwot)) sIn(x) -
f(=t) =co+ Z(ck cos(kwot) — dj sin(kwyt)) £ \
k=1 :

* ¢;.’s (cosines) alone only represent the symmetric part of the signal.
* d;, ’'s (sines) alone only represent the antisymmetric part of the signal.

f(t) +2f(—t) () = f(®) —Zf (—t)

fs(t) =

The symmetric part shows up in the ¢, coefficients, and the antisymmetric
part shows up in the d;, coefficients.

Slide #45 of Lecture 02A




Properties (V): Time Shift

* Consider y(t) = x(t — ty) , where x is periodic in T. What are the

CTFS coefficients Y [k], in terms of X|k]?
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let u=t-—ty,
thent = u + ¢,
dt = du

Each coefficient Y [k] in the series for y(t) is a constant e /%®07 times the

corresponding coefficient X[k] in the series for x(t).




Properties (VI): Time Derivative

* Consider y(t) = %x(t) , Where x(t) and y(t) are periodic in T. What
are the CTFS coefficients Y [k], in terms of X|k]?



Properties of Fourier Transforms

Continuous-Time Fourier Transform

Property

Linearity
Time reversal
Time delay
Conjugation
Scaling time

Time derivative

Frequency derivative

ax1(t) + bro(t)  aXi(w)+ bXs(w)

Discrete-Time Fourier Transform

Property y[n] Y (Q)
Linearity axi[n] + bxa[n]  aX1(Q) + bX2(Q)
Time reversal x[—n)] X(—9)
Time delay z[n—ng] e~I8m0 X (Q)
Conjugation z*[n] X*(—Q)
Frequency derivative nx(n] jd%X(Q)




Exercise |

Let Y[ k| represent the Fourier series coefficients of the following
signal: y(t)
1/8 -

Which of the following is/are true? Participation question for Lecture
1. Y[k]=0if k is even

2. Y|k is real-valued

3. |Y[k]| decreases with k?

4. there are an infinite number of non-zero Y [k]



Exercise Il

Ben Bitdiddle created a signal z[n] representing the MIT dome, but he only saved the DTES coefficients X;[k] (and not the

original signal). However, he knew that one period of the original signal (which is periodic in N = 51) looked like this:

X a[k] = Re (Xg[k])

Xplk] = Im (Xq[k])

Xc[k] = jIm (Xo[k])
ifk=0
Xplk] = _
Xo[k] otherwise
0 if k =25
Xplk] = .
Xolk] otherwise
Xrlk] = Xo[k] +1/51
X{;[L] = Ej?TX(][;J]
Xol0 if k =0
Xuli= {0 R0
e!™ Xolk] otherwise

X_{ [k] = |X{)[k]|gji—ﬁ){(][k]j
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