
6.300 Signal Processing
Week 4, Lecture B:

Discrete Time Fourier Transform 
•Definition
•Examples
•DT vs CT; FS vs FT
•DT Impulse

Quiz 1: Thursday October 3, 2-4pm 50-340 
• Closed book except for one page of notes (8.5’’ x 11’’ both sides)
• No electronic devices (No headphones, cell phones, calculators, …)
• Coverage up to Week #3 (DTFS)
• practice quiz as a study aid, no HW#4



Geometric Series



From Fourier Series to Fourier Transform (DT)

• Last time: use continuous-time Fourier transform to represent 
arbitrary (aperiodic) CT signals as sums of sinusoidal components

Today: generalize the Fourier Transform idea to discrete-time 
signals.

Synthesis equation

Analysis equation𝑋 𝜔 = න
−∞

∞

𝑥(𝑡) ∙ 𝑒−𝑗𝜔𝑡 𝑑𝑡

𝑥 𝑡 =
1

2𝜋
න

−∞

∞

𝑋(𝜔) ∙ 𝑒𝑗𝜔𝑡 𝑑𝜔



Fourier Representations of Aperiodic Signals
How can we represent an aperiodic signal as a sum of sinusoids?

Strategy: make a periodic version of 𝑥[𝑛] by summing shifted copies:

Since 𝑥𝑝[𝑛] is periodic, it has a Fourier series (which depends on N)

Find Fourier series coefficients 𝑋𝑝[𝑘] and take the limit of 𝑋𝑝[𝑘] as N → ∞

As N → ∞, 𝑥𝑝[𝑛] → 𝑥[𝑛] and Fourier series will approach Fourier transform.
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Fourier Representations of Aperiodic Signals

Calculate the Fourier series coefficients 𝑋𝑝[𝑘] :

=
1

𝑁
+

2

𝑁
cos

2𝜋𝑘

𝑁
+

2

𝑁
cos

4𝜋𝑘

𝑁

What happens if you double the period N?

The red samples are at new intermediate frequencies

There will be twice as many samples per period of the cosine functions

𝑋𝑝 𝑘 =
1

𝑁


𝑛=<𝑁>

𝑥[𝑛] ∙ 𝑒−𝑗
2𝜋
𝑁 𝑘𝑛

Plot the resulting Fourier Series coefficients for N=8.

𝑋𝑝 𝑘 =
1

𝑁


𝑛=<𝑁>

𝑥𝑝[𝑛] ∙ 𝑒−𝑗
2𝜋
𝑁 𝑘𝑛
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Fourier Representations of Aperiodic Signals

𝑙𝑒𝑡 Ω =
2𝜋𝑘

𝑁
, Define a new function X Ω = 𝑁 ∙ 𝑋𝑝 𝑘 = 1 +  2 cos Ω + 2 cos 2Ω

If we consider Ω and X Ω = 1 +  2 cos Ω + 2 cos 2Ω  to be continuous, the 
discrete function 𝑁𝑋𝑝 𝑘  is a sampled version of X Ω .

As N increases, the 
resolution in Ω 
increases

𝑋𝑝[𝑘] =
1

𝑁
+

2

𝑁
cos

2𝜋𝑘

𝑁
+

2

𝑁
cos

4𝜋𝑘

𝑁



Fourier Representations of Aperiodic Signals
We can reconstruct 𝑥[𝑛] from X Ω  using Riemann sums (approximating an integral 
by a finite sum).

As N → ∞, 

• 𝑘Ω0 =
2𝜋𝑘

𝑁
 becomes a continuum, 

2𝜋𝑘

𝑁
→ Ω. 

• The sum takes the from of an 

integral,Ω0 =
2𝜋

𝑁
→ 𝑑Ω

• We obtain a spectrum of coefficients: 
𝑋 Ω .



Discrete-Time Fourier Transform

Since X Ω = 𝑁 ∙ 𝑋𝑝 𝑘

𝑋 Ω = 

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

𝑋𝑝 𝑘 =
1

𝑁


𝑛=<𝑁>

𝑥[𝑛] ∙ 𝑒−𝑗
2𝜋
𝑁 𝑘𝑛



Fourier Series and Fourier Transform

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(Ω) ∙ 𝑒𝑗Ω𝑛 𝑑Ω

Fourier series and transforms are similar: 
both represent signals by their frequency content.

𝑋 Ω = 𝑋(Ω + 2𝜋) = 

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

Discrete-Time Fourier Series

Ω0 =
2𝜋

𝑁

Synthesis equation

Analysis equation

𝑥 𝑛 = 𝑥 𝑛 + 𝑁 = 

𝑘=<𝑁>

𝑋 𝑘 𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑋 𝑘 = 𝑋[𝑘 + 𝑁] =
1

𝑁


𝑛=<𝑁>

𝑥 𝑛 𝑒−𝑗Ω0𝑘𝑛



Fourier Series and Fourier Transform
Periodic signals can be synthesized from a discrete set of harmonics. 
Aperiodic signals generally require all possible frequencies. 

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(Ω) ∙ 𝑒𝑗Ω𝑛 𝑑Ω

𝑋 Ω = 𝑋(Ω + 2𝜋) = 

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

Discrete-Time Fourier Series

Ω0 =
2𝜋

𝑁

Synthesis equation

Analysis equation

𝑥 𝑛 = 𝑥 𝑛 + 𝑁 = 

𝑘=<𝑁>

𝑋 𝑘 𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑋 𝑘 = 𝑋[𝑘 + 𝑁] =
1

𝑁


𝑛=<𝑁>

𝑥 𝑛 𝑒−𝑗Ω0𝑘𝑛



Fourier Series and Fourier Transform
All of the information in a periodic signal is contained in one period. 
The information in an aperiodic signal is spread across all time. 

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(Ω) ∙ 𝑒𝑗Ω𝑛 𝑑Ω

𝑋 Ω = 𝑋(Ω + 2𝜋) = 

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

Discrete-Time Fourier Series

Ω0 =
2𝜋

𝑁

Synthesis equation

Analysis equation

𝑥 𝑛 = 𝑥 𝑛 + 𝑁 = 

𝑘=<𝑁>

𝑋 𝑘 𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑋 𝑘 = 𝑋[𝑘 + 𝑁] =
1

𝑁


𝑛=<𝑁>

𝑥 𝑛 𝑒−𝑗Ω0𝑘𝑛



Fourier Series and Fourier Transform
Harmonic frequencies 𝑘Ω0 are samples of continuous frequency Ω

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(Ω) ∙ 𝑒𝑗Ω𝑛 𝑑Ω

𝑋 Ω = 𝑋(Ω + 2𝜋) = 

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

Discrete-Time Fourier Series

Ω0 =
2𝜋

𝑁

Synthesis equation

Analysis equation

𝑥 𝑛 = 𝑥 𝑛 + 𝑁 = 

𝑘=<𝑁>

𝑋 𝑘 𝑒𝑗Ω0𝑘𝑛

𝑋 𝑘 = 𝑋[𝑘 + 𝑁] =
1

𝑁


𝑛=<𝑁>

𝑥 𝑛 𝑒−𝑗Ω0𝑘𝑛



CT and DT Fourier Transforms
DT frequencies alias because adding 2π to Ω does not change 𝑒𝑗Ω𝑛.
Because of aliasing, we need only integrate dΩ over a 2π interval.

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(Ω) ∙ 𝑒𝑗Ω𝑛 𝑑Ω

𝑋 Ω = 𝑋(Ω + 2𝜋) = 

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

Continuous-Time Fourier Transform

Synthesis equation

Analysis equation𝑋 𝜔 = න
−∞

∞

𝑥(𝑡) ∙ 𝑒−𝑗𝜔𝑡 𝑑𝑡

𝑥 𝑡 =
1

2𝜋
න

−∞

∞

𝑋(𝜔) ∙ 𝑒𝑗𝜔𝑡 𝑑𝜔



Fourier Transform of a Rectangular Pulse (width 2S+1)

𝑃𝑆(Ω)  = 

𝑛=−∞

∞

𝑝𝑆 [𝑛] ∙ 𝑒−𝑗Ω𝑛 = 

𝑛=−𝑆

𝑆

𝑒−𝑗Ω𝑛
= 𝑒𝑗Ω𝑆 

𝑚=0

2𝑆

𝑒−𝑗Ω𝑚

𝑃𝑆(Ω) =
𝑒𝑗Ω(𝑆+

1
2)

𝑒𝑗Ω/2
∙

1 − 𝑒−𝑗Ω(2𝑆+1)

1 − 𝑒−𝑗Ω =
𝑒𝑗Ω(𝑆+

1
2) − 𝑒−𝑗Ω(𝑆+

1
2)

𝑒𝑗Ω/2 − 𝑒−𝑗Ω/2 =
sin(Ω 𝑆 +

1
2

)

sin(
Ω
2

)

When Ω ≠ 0 𝑜𝑟 2𝑘𝜋

When Ω = 0, (𝑜𝑟 2𝑘𝜋), 𝑃𝑆 Ω = 2𝑆 + 1

1 1

𝑙𝑒𝑡 𝑚 = 𝑛 + 𝑆, 𝑛 = 𝑚 − 𝑆



Fourier Transform of a rectangular pulse

Similar to CT, the value of X(Ω) at Ω = 0 is the sum of x[n] over all time.



Fourier Transform of a rectangular pulse

The value of x[0] is 1/2π times the integral of X(Ω) over Ω = [−π, π].



Fourier Transforms of Pulses with Different Widths

As the function widens in n(time) the Fourier transform narrows in Ω (freq).

How about going the other way?

𝑃𝑆(Ω) =
sin(Ω 𝑆 +

1
2

)

sin(
Ω
2

)

In the extreme of S=0, the signal becomes a unit impulse δ[n] 



DT Impulse
The DT impulse is δ[n], its CT equivalent is δ(t) 

δ[n] still has the “sifting property:”

𝛿(𝑡) 𝑋 𝜔

The DTFT of δ[n]:

𝑋 Ω = 

𝑛=−∞

∞

𝛿[𝑛] ∙ 𝑒−𝑗Ω𝑛 = 1

In comparison to its CT counterpart δ(t):

δ[n]

0



Special Cases



Special Cases



Unit Impulse in Frequency Domain

𝑥 𝑛 =
1

2𝜋
න

2𝜋

𝑋 Ω 𝑒𝑗Ω𝑛𝑑Ω

Because DT Fourier Transforms are periodic in 2π, it becomes an impulse train 
repeated every 2π.

=
1

2𝜋
න

−𝜋

𝜋

𝛿 Ω 𝑒𝑗Ω𝑛𝑑Ω =
1

2𝜋
න

0−

0+

𝛿 Ω 𝑒𝑗0𝑛𝑑Ω =
1

2𝜋
න

0−

0+

𝛿 Ω 𝑑Ω =
1

2𝜋

Therefore if x[n] = 1 for all n, the transform is a delta function in frequency.

The DT signal whose Fourier transform is the above unit impulse is:

This is in contrast to the CT case:



Math With Impulses

This is what we learned previously:



Math With Impulses



Relations Between Fourier Series and Fourier Transforms



Relations Between Fourier Series and Fourier Transforms



Relations Between Fourier Series and Fourier Transforms



Summary

• Discrete-Time Fourier Transform: Fourier representation to all DT signals! 

• Very useful signals:
• Rectangular pulse and its FT(sinc)
• Delta function (Unit impulse) and its FT

Synthesis equation

Analysis equation

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(Ω) ∙ 𝑒𝑗Ω𝑛 𝑑Ω

𝑋 Ω = 𝑋(Ω + 2𝜋) = 

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

δ[n]
X(Ω)=1

𝐷𝑇𝐹𝑇

Ω

𝐷𝑇𝐹𝑇

• If a periodic signal 𝑓[𝑛]  = 𝑓[𝑛 + 𝑁] has a Fourier Series representation, then 
it can also be represented by an equivalent Fourier Transform.  

We will now go to 4-370 for recitation & common hour
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