6.300 Signal Processing

Week 4, Lecture B:
Discrete Time Fourier Transform

*Definition
*Examples

DT vs CT; FSvs FT
*DT Impulse

Quiz 1: Thursday October 3, 2-4pm 50-340

* Closed book except for one page of notes (8.5”” x 11" both sides)

* No electronic devices (No headphones, cell phones, calculators, ...)
e Coverage up to Week #3 (DTFS)

e practice quiz as a study aid, no HW#4




Geometric Series

Closed form sums of geometric sequences.
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If the series has finite length (here N terms), it will converge for finite «.
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If the series has infinite length, it will converge if || < 1.
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From Fourier Series to Fourier Transform (DT)

e Last time: use continuous-time Fourier transform to represent
arbitrary (aperiodic) CT signals as sums of sinusoidal components

x(t) = %j X(w) e/t dw Synthesis equation

X(w) =j x(t) -e /@t dt Analysis equation

Today: generalize the Fourier Transform idea to discrete-time
signals.



Fourier Representations of Aperiodic Signals

How can we represent an aperiodic signal as a sum of sinusoids?

z[n]
ooooo 1

—2 0 2

Strategy: make a periodic version of x[n] by summing shifted copies:

0.9

Epln] = Z z[n — mN]|

m=—oo

—N —2 0 2 N

Since x,[n] is periodic, it has a Fourier series (which depends on N)
Find Fourier series coefficients X,,[k] and take the limit of X;,[k] as N = e

As N - oo, x,,|n]| - x[n] and Fourier series will approach Fourier transform.



Fourier Representations of Aperiodic Signals
Epn] = Z x[n — mN|

m=—0oo

—N —20 2 N

Calculate the Fourier series coefficients X, [k] :

Plot the resulting Fourier Series coefficients for N=8.

What happens if you double the period N? I T ooy T [ T —— T i




Fourier Representations of Aperiodic Signals

= oo (5 oo (59

let Q) = %, Define a new function X(()) = N - X,,[k] = 1+ 2 cos(Q) + 2 cos(2Q)

If we consider Q and X(Q2) =1+ 2cos(Q) + 2 cos(2()) to be continuous, the
discrete function NX,|k] is a sampled version of X((1).

NX,[K = X(Q)
S Y
NPyt N ™/ 0 =2

As N increases, the
resolution in Q)
increases

N=16:




Fourier Representations of Aperiodic Signals

We can reconstruct x[n] from X() using Riemann sums (approximating an integral
by a finite sum).
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N=382: -2z * We obtain a spectrum of coefficients:
= % X(.Q)




Discrete-Time Fourier Transform

1 27 2m 1 :
= B = lim — 5 NX, kN (Z) = — | X(Q)eddQ
mjn] = Hm zpind Nﬂozwk:<N> plkle (N) T (Q)e
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Fourier Series and Fourier Transform

Discrete-Time Fourier Transform

x[n] = L X(Q) - e/ dQ
2T )y

(0.0]

X@ =X@+2m)= ) xfn]- eI

n=-—oco

Discrete-Time Fourier Series

]EEMQ
x[n] = x[n + N] X[kle’N

X[k] = X[k +N] = % Z x[n]e~Jokn

Synthesis equation

Analysis equation

Synthesis equation 2T

Analysis equation



Fourier Series and Fourier Transform

Discrete-Time Fourier Transform
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Discrete-Time Fourier Series
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Fourier Series and Fourier Transform

Discrete-Time Fourier Transform
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Fourier Series and Fourier Transform

Discrete-Time Fourier Transform

x[n] = L X(Q) - e/ dQ
2T )y

(0.0]

X@ =X@+2m)= ) xfn]- eI

n=-—oco

Discrete-Time Fourier Series

x[n] = x[n + N] z X[k]e 2ok
k=<N>

X[k] = X[k +N] = % Z x[n]e~Jokn

n=<N>

Synthesis equation

Analysis equation

Synthesis equation 2T

Analysis equation



CT and DT Fourier Transforms

Discrete-Time Fourier Transform

x[n] = L X(Q) - e’ 0
2T )y

(0.0]

X(Q) = X(Q + 27) = z x[n] - e~

n=-—oo
Continuous-Time Fourier Transform

1 ® .
x(t) = %J_OoX(a)) e/t dw

X(w) = joox(t) e ot gt

Synthesis equation

Analysis equation

Synthesis equation

Analysis equation



Fourier Transform of a Rectangular Pulse (width 2S+1)

p2[n]

1 -S<NKLKS
ps[n]z{

0 otherwise



Fourier Transform of a rectangular pulse

Similar to CT, the value of X(Q) at Q = 0 is the sum of x[n] over all time.

0@
X(0) = Z [n]e~ 4" = Z z|n
n=—oo n=—oo
p2|n PQ(Q)
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Fourier Transform of a rectangular pulse

The value of x[0] is 1/2m times the integral of X(Q) over Q = [-m, m].

1 . 1
z[0] = o 2 X(Q)em”dﬂ:% : X(Q)d




Fourier Transforms of Pulses with Different Widths

P(2)
5]
ves o \ A\ / eee Sin(Q (S + %))
L N Tt T R S TR P Q) =
—27 2m 27 S .
: H sin(3)

As the function widens in n(time) the Fourier transform narrows in Q (freq).
How about going the other way?

In the extreme of S=0, the signal becomes a unit impulse &[n]



DT Impulse
The DT impulse is 6[n], its CT equivalent is 6(t)

1 T m=10
5] = { |
0 otherwise

The DTFT of §[n]: &[n] still has the “sifting property:”
X@= ) 8[n] e =1 S 6ln—alfn] = fla)

In comparison to its CT counterpart 6(t):
6(t) X(w)

/_0:05(t)dt:/0+ )it =1 ‘1 | 1




Special Cases

The Fourier transform of the shortest possible CT signal f(t) = () is the
widest possible CT transform F(w) = 1.

Flw) = /_ O; F(t)eIet = /_ Zé(t)e—jwf - /_ z 5(t)e=i“0 — 1

A similar result holds in DT.

i flne 7" = Z o[n]e 7 = Z o[n]e 70 =1

n=—oo n=—oo n=—oo



Special Cases

The Fourier transform of the widest possible CT signal f(t) = 1 is the
narrowest possible CT transform F(w) = 2nd(w).

1 "o0 p 1 oo p el .
f(t) / F(we 7“dw = — | 276(w)e dw = / S(w)e dw =1

:% —00 2m —00 —00

A similar result holds in DT.

fIn] / F(Q)e ™ 7*dQ = o 276(Q)e AN = / 6(Q)e 7O = 1
2 2

27 T T Jor T



Unit Impulse in Frequency Domain

Because DT Fourier Transforms are periodic in 2m, it becomes an impulse train

repeated every 2m. X(Q) = Z 592 — 27m)

The DT signal whose Fourier transform is the above unit impulse is:
04 04

1 . 1 (" : 1 . 1 1
x[n] =— | X(Qe/Mda = —j §(WelMdQ = — [ §5(Q)e/mdQ = — =
=52 | x@) ) =] 8@ | san =

Therefore if x[n] = 1 for all n, the transform is a delta function in frequency.

1 = Z 276(2 — 27Tm)

m=—aoo

This is in contrast to the CT case:
1 & 276(w)



Math With Impulses

This is what we learned previously:

1 [

f(t) F(w)e’ dw

2T ) _ae

| B e ;

= — 276 (w—wo )e? dw
2T | _ oo

o |
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Thus, the Fourier transform of a complex exponential is a delta function
at the frequency of the complex exponential:

el@ot  TET 9§ (w—w,)

The impulse in frequency has infinite value at w = w, and is zero at all
other frequencies.



Math With Impulses

A similar construction applies in DT.

fln] = % /2 F(Q)e/M a0

= — [ 275(Q2—0Q,)ed " d0
27T o7

— / 5(Q—0Q,)el o d0)
2
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Thus, the Fourier transform of a complex exponential is a delta function
at the frequency of the complex exponential:

gltton  DIEL 975(0—0Q,)

The impulse in frequency shows that the transform is infinite at 2 = ),
and is zero at all other frequencies.



Relations Between Fourier Series and Fourier Transforms

If a periodic signal f(t) = f(t+ ") has a Fourier series representation, then
it can also be represented by an equivalent Fourier transform.

elot Ih 276 (w — wo)
= -2m CTFS
t)=f(t+T) = Flkled Tk Pk
fit)=ft+T) kz_:oo[}f’ %]
B L 2me  CTFT > o sl 2T,
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Each term in the Fourier series is replaced by an impulse in the Fourier
transform.



Relations Between Fourier Series and Fourier Transforms

Each Fourier series term is replaced by an impulse in the Fourier transform.

fty=">_ f(t—mT)

m=—0oco
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Relations Between Fourier Series and Fourier Transforms

Each Fourier series term is replaced by an impulse in the Fourier transform.

fIn] = fI[n—N] for all integers n

—N 0 N

Periodic DT signals that have Fourier series representations also have
Fourier transform representations.



Summa ry We will now go to 4-370 for recitation & common hour

* Discrete-Time Fourier Transform: Fourier representation to all DT signals!

1 .
x[n] = 2—f X(Q) - e/ da Synthesis equation
T Jon
X(Q)=X(Q+2n) = Z x[n] - e 7 Analysis equation
n=—oo pz[n] g Py ()
e Very useful signals: =N\ /N

 Rectangular pulse and its FT(sinc) 202 o 0 w
e Delta function (Unit impulse) and its FT

* If a periodic signal f[n] = f[n + N] has a Fourier Series representation, then
it can also be represented by an equivalent Fourier Transform.
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