6. 300 Signal Processing

Week 4, Lecture A: Continuous Time Fourier Transform

- Definition
- Example
- Impulse function $\delta(t)$

Quiz 1: Thursday October 3, 2-4pm 50-340

- Closed book except for one page of notes (8.5" x 11" both sides)
- No electronic devices (No headphones, cell phones, calculators, ...)
- Coverage up to Week #3 (DTFS)

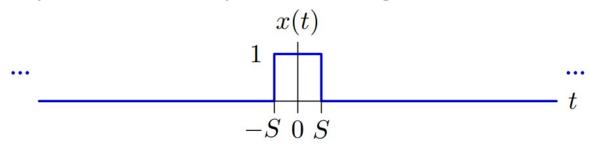
From Periodic to Aperiodic

- Previously, we have focused on Fourier representations of periodic signals: e.g., sounds, waves, music, ...
- However, most real-world signals are not periodic.

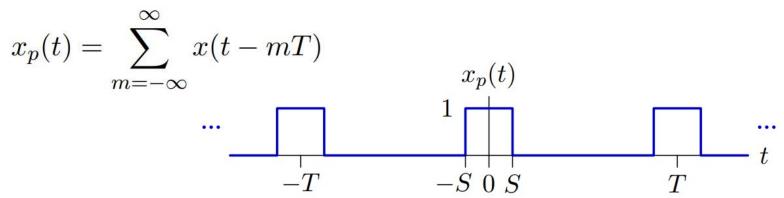
Today: generalizing Fourier representations to include aperiodic signals -> Fourier Transform

Fourier Representations of Aperiodic Signals

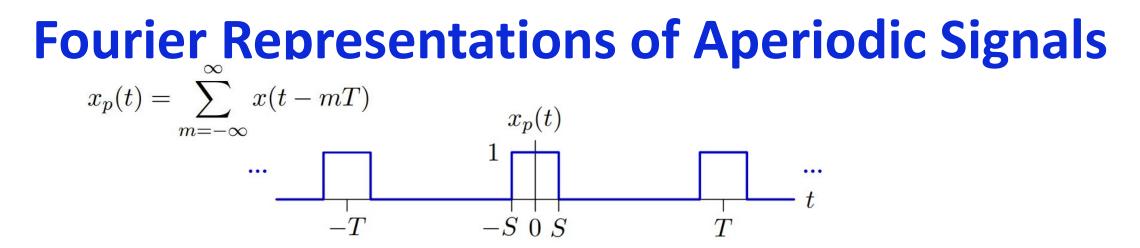
How can we represent an aperiodic signal as a sum of sinusoids?



Strategy: make a periodic version of x(t) by summing shifted copies:



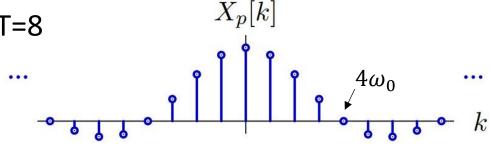
Since $x_p(t)$ is periodic, it has a Fourier series (which depends on T) Find Fourier series coefficients $X_p[k]$ and take the limit of $X_p[k]$ as $T \to \infty$ As $T \to \infty$, $x_p(t) \to x(t)$ and Fourier series will approach Fourier transform.



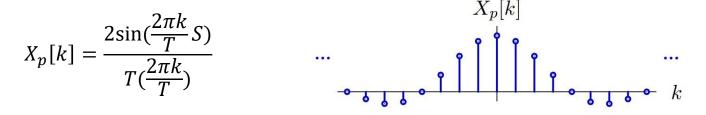
Calculate the Fourier series coefficients $X_p[k]$:

Plot the resulting Fourier coefficients when S=1 and T=8

What happens if you double the period T?



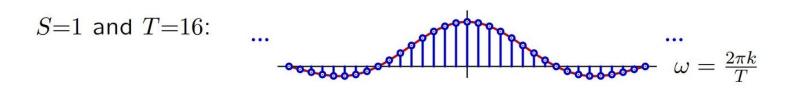
Fourier Representations of Aperiodic Signals



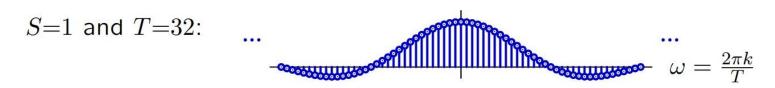
let $\omega = \frac{2\pi k}{T}$, Define a new function $X(\omega) = T \cdot X_p[k] = 2 \frac{\sin(\omega S)}{\omega}$

If we consider ω and $X(\omega) = 2 \frac{\sin(\omega S)}{\omega}$ to be continuous, $TX_p[k]$ represents a sampled version of the function $X(\omega)$. $TX_p[k] = \chi\left(\omega = \frac{2\pi k}{\omega}\right)$

$$S=1$$
 and $T=8$: ... $\omega = \frac{2\pi k}{T}$



As T increases, the resolution in ω increases.



Fourier Representations of Aperiodic Signals

We can reconstruct x(t) from $X(\omega)$ using Riemann sums (approximating an integral by a finite sum).

Fourier Transform

$$x(t) = \lim_{T \to \infty} x_p(t) = \lim_{T \to \infty} \frac{1}{2\pi} \sum_k T X_p[k] e^{j\frac{2\pi}{T}kt} \left(\frac{2\pi}{T}\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Since
$$X(\omega) = T \cdot X_p[k]$$
 $X_p[k] = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot e^{-j\frac{2\pi}{T}kt} dt$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Continuous-Time Fourier Transform

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} \, d\omega$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Synthesis equation

Analysis equation

Continuous-Time Fourier Series

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}}$$

$$X[k] = \frac{1}{T} \int_{T} x(t) e^{-j\frac{2\pi}{T}kt} dt$$

Synthesis equation

$$\omega_0 = \frac{2\pi}{T}$$

Continuous-Time Fourier Transform

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} \, d\omega$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Synthesis equation

Analysis equation

Continuous-Time Fourier Series

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}}$$

$$X[k] = \frac{1}{T} \int_{T} x(t) e^{-j\frac{2\pi}{T}kt} dt$$

Synthesis equation

$$\omega_0 = \frac{2\pi}{T}$$

Continuous-Time Fourier Transform

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} \, d\omega$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} \, dt$$

Synthesis equation

Analysis equation

Continuous-Time Fourier Series

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}}$$

$$X[k] = \frac{1}{T} \int_{T} x(t) e^{-j\frac{2\pi}{T}kt} dt$$

Synthesis equation

$$\omega_0 = \frac{2\pi}{T}$$

Continuous-Time Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} d\omega$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Synthesis equation

Analysis equation

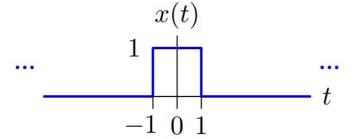
Continuous-Time Fourier Series

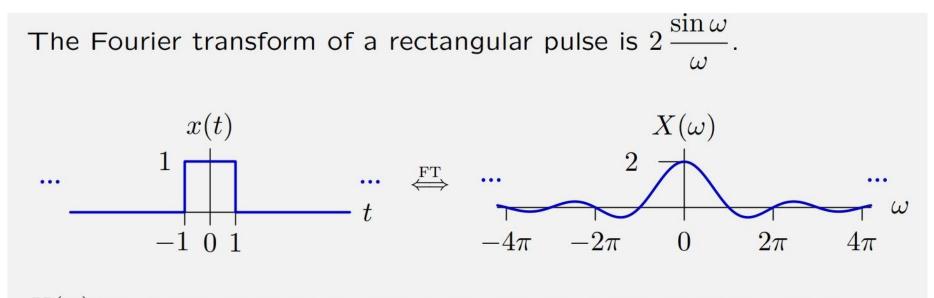
$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi k}{T}t}$$

$$X[k] = \frac{1}{T} \int_{T} x(t) e^{-j\frac{2\pi}{T}kt} dt$$

Synthesis equation

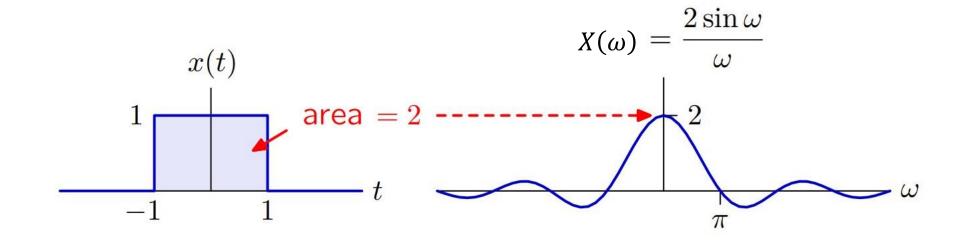
$$\omega_0 = \frac{2\pi}{T}$$





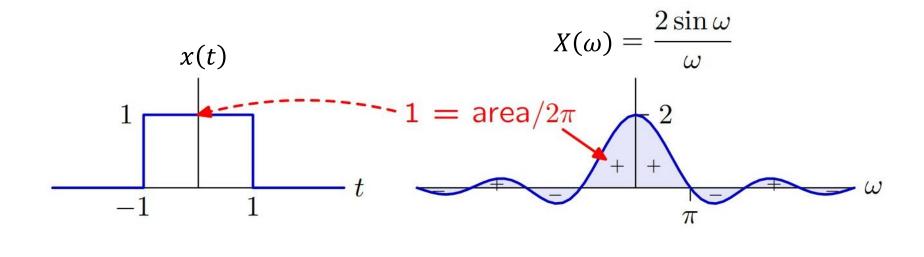
 $X(\omega)$ contains all frequencies ω except non-zero multiples of π .

By definition, the value of $X(\omega = 0)$ is the integral of x(t) over all time



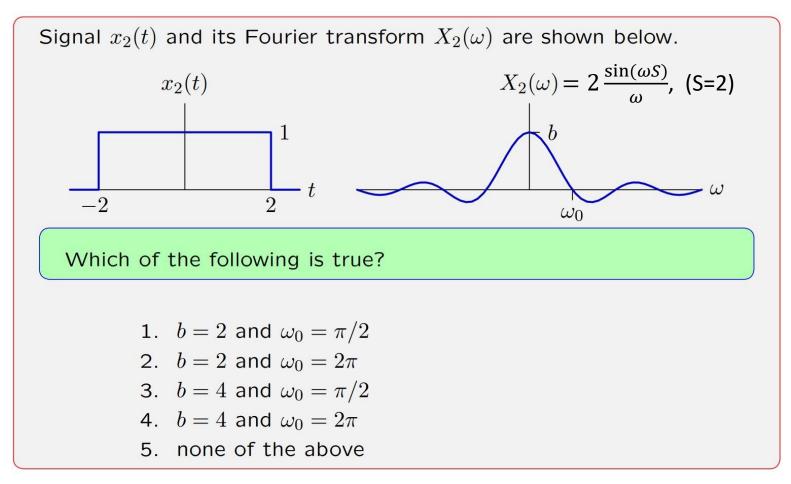
$$X(0) = \int_{-\infty}^{\infty} x(t)e^{-j0t}dt = \int_{-\infty}^{\infty} x(t)dt$$

By definition, the value of x(t = 0) is the integral of $X(\omega)$ over all frequencies, divided by 2π



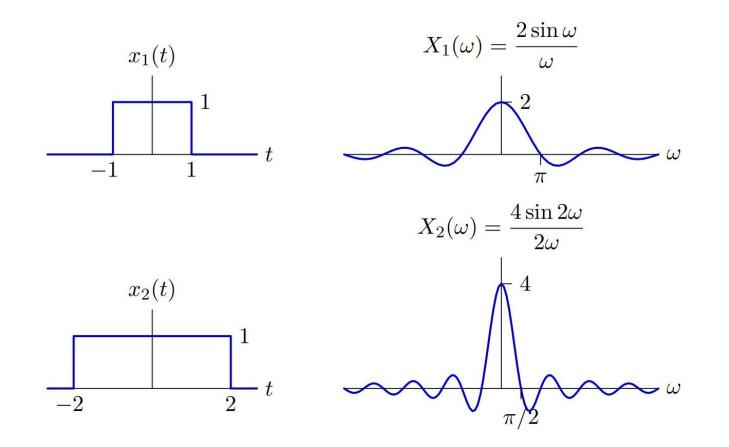
$$x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega 0} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) d\omega$$

Check yourself!



Stretching In Time

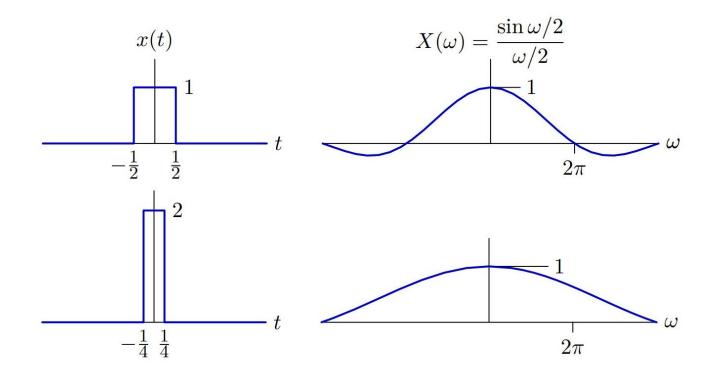
How would $X(\omega)$ scale if time were stretched?



Stretching in time compresses in frequency.

Compressing Time to the Limit

Alternatively, compress time while keeping area = 1:



In the limit, the pulse has zero width but area 1! We represent this limit with the delta function: $\delta(t)$.

Although physically unrealizable, the impulse (a.k.a. Dirac delta) function $\delta(t)$ is useful as a mathematically tractable approximation to a very brief signal.

 $\delta(t)$ only has a nonzero value at t = 0, but it has finite area: it is most easily described as an integral:

$$\int_{-\infty}^{\infty} \delta(t)dt = \int_{0_{-}}^{0_{+}} \delta(t)dt = 1 \qquad \qquad \int_{-\infty}^{\infty} \delta(t-a) \ dt = \int_{a_{-}}^{a_{+}} \delta(t) \ dt = 1$$

Importantly, it has the following property (the "sifting property"):

$$\int_{-\infty}^{\infty} \delta(t-a)f(t)dt = f(a)$$

et $\tau = t - a$, $\int_{-\infty}^{\infty} \delta(\tau)f(\tau+a)d\tau = \int_{0-}^{0+} \delta(\tau)f(a)d\tau = f(a) \cdot \int_{0-}^{0+} \delta(\tau)d\tau = f(a)$

The Fourier Transform of $\delta(t)$:

Find the function whose Fourier transform is a unit impulse.

Although physically unrealizable, the impulse (a.k.a. Dirac delta) function is useful as a mathematically tractable approximation to a very brief signal.

Find the function whose Fourier transform is a shifted impulse.

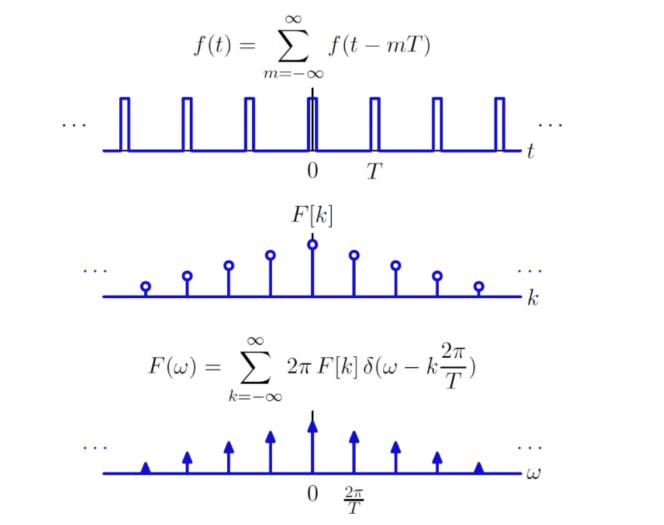
We can use this result to relate Fourier series to Fourier Transforms.

If a periodic signal f(t) = f(t + T) has a Fourier Series representation, then it can also be represented by an equivalent Fourier Transform.

$$\begin{split} e^{j\omega_{o}t} &\stackrel{\text{FT}}{\Longrightarrow} 2\pi\delta(\omega - \omega_{o}) \\ f(t) &= f(t+T) = \sum_{k=-\infty}^{\infty} F[k] e^{j\frac{2\pi}{T}kt} & \stackrel{\text{CTFS}}{\longleftrightarrow} & F[k] \\ f(t) &= f(t+T) = \sum_{k=-\infty}^{\infty} F[k] e^{j\frac{2\pi}{T}kt} & \stackrel{\text{CTFT}}{\longleftrightarrow} & \sum_{k=-\infty}^{\infty} 2\pi F[k] \delta\left(\omega - \frac{2\pi}{T}k\right) = F(\omega) \end{split}$$

Each term in the Fourier Series is replaced by an impulse in the Fourier transform.

Each Fourier Series term is replaced by an impulse in the Fourier transform.



Summary We will now go to 4-370 for recitation & common hour

• Continuous Time Fourier Transform: Fourier representation to all CT signals!

Synthesis equation

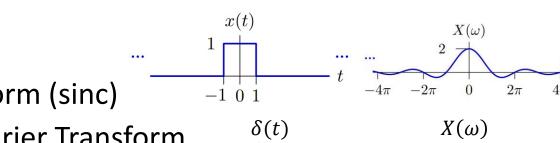
Analysis equation

$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} \, d\omega$

• Very useful signals:

- Rectangular pulse and its Fourier Transform (sinc)
- Delta function (Unit impulse) and its Fourier Transform



• If a periodic signal f(t) = f(t + T) has a Fourier Series representation, then it can also be represented by an equivalent Fourier Transform.