6.300 Signal Processing

Week 3, Lecture B: Discrete Time Fourier Series

- Fourier series representations for discrete-time signals
- CTFS vs DTFS
- Application of DTFS

Lecture slides are available on CATSOOP: https://sigproc.mit.edu/fall24

Brief Review

Discrete Time Sinusoids

 $x[n] = A\cos(\Omega n + \Phi)$

- n is always an integer!
- Aliasing and base-band

Today: Apply the FS ideas to DT signals and introduce the DT Fourier Series

What is the fundamental (shortest) period of each of the following DT signals?

1.
$$f_1[n] = \cos\left(\frac{\pi n}{12}\right)$$

2. $f_2[n] = \cos\left(\frac{\pi n}{12}\right) + 3\cos\left(\frac{\pi n}{15}\right)$
3. $f_3[n] = \cos(n)$

- The period N of a periodic DT signal must be an integer.
- While this is not surprising, it leads to an interesting consequence.

Recall: Continuous-time Fourier Series

Only **periodic** signals can be represented by Fourier series.

$$f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} c_k \cos k\omega_o t + \sum_{k=1}^{\infty} d_k \sin k\omega_o t = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t} = \sum_{k=-\infty}^{\infty} F[k] e^{j\frac{2\pi k}{T}t}$$

where $\omega_o = \frac{2\pi}{T}$ represents the fundamental frequency.

Real-valued basis functions

What is the equivalent constraint for discrete-time signals?

Today: Discrete-time Fourier Series

Goal: Apply the FS ideas to DT signals

$$f[n] = c_0 + \sum_{k=\langle N \rangle} c_k \cos(k\Omega_o n) + \sum_{k=\langle N \rangle} d_k \sin(k\Omega_o n) \qquad f[n] = f[n+N] = \sum_{k=k_0}^{k_0+N-1} F[k]e^{j\frac{2\pi}{N}kn}$$

where Ω_o represents the fundamental frequency (radians/sample).

Q: What are the important difference(s)?

CTFS vs DTFS

Only **periodic** signals can be represented by Fourier series.

$$f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} c_k \cos k\omega_o t + \sum_{k=1}^{\infty} d_k \sin k\omega_o t = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t} = \sum_{k=-\infty}^{\infty} F[k] e^{j\frac{2\pi k}{T}t}$$

where $\omega_o = \frac{2\pi}{T}$ represents the fundamental frequency.

Q: What are the important difference(s)?

$$f[n] = c_0 + \sum_{k = \langle N \rangle} c_k \cos(k\Omega_o n) + \sum_{k = \langle N \rangle} d_k \sin(k\Omega_o n) \qquad f[n] = f[n+N] = \sum_{k=k_0}^{k_0+N-1} F[k] e^{j\frac{2\pi}{N}kn}$$

where Ω_o represents the fundamental frequency (radians/sample).

Number of Harmonics

• In the case of CTFS, there can be infinite number of harmonics,

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}}$$

• For DT signals with period N, as Ω_0 is a submultiple of 2π , there are (only) N distinct complex exponentials $e^{j\Omega_0 kn}$. The rest harmonics alias.

Example of N = 8:
$$\Omega_0 = \frac{2\pi}{8} = \frac{\pi}{4}$$

There are only 8 unique harmonics($k\Omega_0$):

$$\frac{0\pi}{4}, \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}, \frac{4\pi}{4}, \frac{5\pi}{4}, \frac{6\pi}{4}, \frac{7\pi}{4}$$

or

$$-\frac{3\pi}{4}, -\frac{2\pi}{4}, -\frac{\pi}{4}, \frac{0\pi}{4}, \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}, \frac{4\pi}{4}$$

Finitely-many Unique Harmonics

There are N distinct complex exponentials with period N.

If a DT signal is periodic with period N, then its Fourier series contains just N terms.

Discrete Time Fourier Series

DT Fourier series comprise a weighted sum of just N harmonics.

$$x[n] = x[n+N] = \sum_{k=\langle N \rangle} X[k]e^{j\Omega_0 kn}$$

How to find the weights?

DT Fourier components are also orthogonal:

Finding DTFS coefficient

Start with DTFS representation:

$$x[n] = x[n+N] = \sum_{k=\langle N \rangle} X[k]e^{j\Omega_0 kn}$$

Then "sift" out one component X[l] :

Periodicity with Fourier Series Coefficient *X*[*k*]

Consider a signal $x[\cdot]$ that is periodic in N, and consider finding the $(k + N)^{th}$ Fourier Series coefficient:

$$X[k] = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\Omega_0 kn}$$

Discrete Time Fourier Series

A periodic DT signal with N samples produces a periodic sequence of N Fourier series coefficients.

$$X[k] = X[k+N] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x[n]e^{-j\Omega_0 kn}$$
$$x[n] = x[n+N] = \sum_{k=k_0}^{k_0+N-1} X[k]e^{j\frac{2\pi}{N}kn}$$

DTFS has just N coefficients, whereas CTFS had infinitely many!

Fourier Series Summary

CT and DT Fourier Series are similar, but DT Fourier Series have just N coefficients while CT Fourier Series have an infinite number.

Continuous-Time Fourier Series $x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}}$ $X[k] = \frac{1}{T} \int_{T} x(t)e^{-j\frac{2\pi kt}{T}} dt$ Discrete-Time Fourier Series $x[n] = x[n+N] = \sum_{k=-\infty}^{k_0+N-1} X[k]e^{j\frac{2\pi}{N}kn}$

 $x[n] = x[n+N] = \sum_{k=k_0}^{n} X[k]e^{j\frac{2N}{N}kn}$ $X[k] = X[k+N] = \frac{1}{N}\sum_{n=n_0}^{n_0+N-1} x[n]e^{-j\Omega_0kn}$

Synthesis equation

$$\omega_0 = \frac{2\pi}{T}$$

Analysis equation

Analysis equation

Synthesis equation

 2π $\Omega_0 =$

• What are the Fourier Series coefficients of the following signal?

$$x[n] = 1 + \cos(\frac{2\pi}{5}n)$$

• What are the Fourier Series coefficients of the following signal?

$$x[n] = 1 + \sin(\frac{\pi}{4}n)$$

• What are the Fourier Series coefficients of the following signal?

$$x[n] = \begin{cases} 1 & \text{if } n \mod 10 \equiv 0\\ 0 & \text{otherwise} \end{cases}$$

• What are the Fourier Series coefficients of the following signal with a period of N=10? x[n] = 0.5

Seebeck used a siren to generate sounds (~1841) by passing a jet of compressed air through holes in a spinning disk.

Seebeck used a siren to generate sounds (~1841) by passing a jet of compressed air through holes in a spinning disk.

The pattern of holes determined the pattern of pulses in each period. The speed of spinning controlled the number of periods per second.

Strangely, adding a second hole per period didn't seem to affect the pitch.

Pitch should be different if it is determined by the intervals between pulses.

There was one very interesting exception.

But hearing this exception required precise alignment of the siren's holes.

Fourier Series

Notice that $f_5[n]$ has no fundamental component!

Fourier Series With and Without the Fundamental

Although perception of the fundamental is weakened, it is not gone!

Fourier Series With and Without the Fundamental

Seebeck designed an extremely clever **experiment** to test pitch perception.

Ohm analyzed an important **theory** (from Fourier) and argued that harmonics are present even in the pulsatile sounds generated by a siren.

Neither Seebeck nor Ohm could convincingly account for experimental results that demonstrated the dominance of the fundamental, even when it was weak or missing.

Progress in understanding the "missing fundamental" awaited Helmholtz, who demonstrated the importance of "combination tones" in the ear.

Summary

- We developed Fourier Series for discrete time signals.
- We compared CTFS and DTFS.
- Discrete-Time Fourier Series:

$$x[n] = x[n+N] = \sum_{k=} X[k]e^{j\frac{2\pi}{N}kn}$$
$$X[k] = X[k+N] = \frac{1}{N}\sum_{n=n_0}^{n_0+N-1} x[n]e^{-j\Omega_0kn}$$

discrete in time => periodic in frequency

We will now go to 4-370 for recitation & common hour