6.300 Signal Processing

Week 3, Lecture A:
Sampling and Aliasing

e Continuous signals = discrete signals
 Sampling effect
* Quantization effect

Lecture slides are available on CATSOOP:
https://sigproc.mit.edu/fall24



Today: from continuous to discrete signals

Physical signals are often of continuous domain:
e continuous spatial coordinates (in meters)
e continuous values

Computations manipulate functions of discrete domain:
* discrete spatial coordinates (in pixels)

 discrete values
Yy brightness (x, y)

sound pressure (t)
o~




Today: from continuous to discrete signals

 Signal processing requires the operation: continuous = discrete
* Today: Understand the relationship between continuous signals to discrete signals.
* Question: How to convert continuous signals to discrete signals?
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Sampling

Sampling refers to the process by which a continuous-time signal f(t) IS
converted to a discrete-time signal f[n].

We use parentheses to denote functions of continuous domain (e.g., f(t))
and square brackets to denote functions of discrete domain (e.g., f[n]).

f(t) fln] = f(na7)
o
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AT = sampling interval

fs = ALT — sampling frequency

How does sampling affect the information contained in a signal?



Effect of sampling are easily heard

* How does sampling affect the information contained in a signal?

Sampling Music

|
fs — A_T
o fo, =44.1 kHz
o f, =22 kHz
o f, =11 kHz
o fs = 5.5 kHz
o f, = 2.8 kHz

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Effect of sampling are easily seen

Sampling images: original 4112 x 3088




Effect of sampling are easily seen

Sampling images: undersample 2x




Effect of sampling are easily seen

Sampling images: undersample 8x




Effect of sampling are easily seen

Sampling images: undersample 16x
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Effect of sampling are easily seen

Sampling images: undersample 32x

Information loss
Distortion



Effect of sampling

We would like to sample in a way that preserves information.
However, information is generally lost in the sampling process.

Example: samples (red) provide no information about intervening values.




Effect of sampling

We would like to sample in a way that preserves information.
However, information is generally lost in the sampling process.

Example: samples (red) provide no information about intervening values.

Furthermore, information that is retained by sampling can be misleading.

Example: samples can suggest patterns not contained in the original.

DML t
VY

Samples (blue) of the original high-frequency signal (green)




The artifacts of sampling in real life

Loss of information Aliasing

IF TV SCIENCE WAS MORE LIKE REAL SCIENCE

SPECIAL AGENTS WOULD HNeEVER

FIGURE OUT WHO THE VILLAIN 1S,

WE RECONSTRUCTED
THIS IMASE FROM A

When fps = rpm

https://www.youtube.com/watch?v=_xTjyV8F6XU



To mitigate artifacts, we need to understand sampling

What is sampling:
* Continuous coordinate = discrete coordinate
* Measuring the value every AT seconds

2(t) x[n] = x (NAT)
K/ ;
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Parameters that matter here:

AT (seconds / sample) = sampling interval
fs (samples / second) = sampling rate



Let’s use sinusoids an example from CT to DT

x(t) = cos(wt)
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Question: what is the relationship between » and €27?

x|n] = cos(Qn)
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Check yourself

x(t) = cos(wt) x[n] = cos(Q2n)
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Question: We have the CT signal shown on the left and its corresponding sampled DT signal shown
on the right. What is the sampling rate f, ?



Intro to aliasing

x[n] = cos(2n)
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Intro to aliasing

x[n] = cos(2n)

1.00 A
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( The same DT signal can be used to
obtain CT signals of different
frequency!
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1 cycle (27 radians) in 10 samples: Q = 0.2«



Intro to aliasing

x[n] = cos(Qn)

1T MMMMMPHM

0.251 . ? h | : J The same DT signal can be used to
0.00 1 ‘ obtain CT signals of different

~0.25 - | frequency!

—0.50 A T { | T [ q y
uuuMWhuuuwuu’

11 cycles (227 radians) in 10 samples: Q = 2.2x



Intro to aliasing

xInl = cos(Qn)
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21 cycles (427 radians) in 10 samples: Q = 4.2« Q: Why this can happen?



Why aliasing can happen

x(t) = cos(wt)

Q: What happens when we increase w?
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V.S. x[n] = cos({2n)

Q: What happens when we increase €2:

 Compared to CT signals: n is always an integer
 We only have values at integer multiples of Q
* There are multiple Q2 values that lead to the exact same
set of discrete points
* Consequences
e This graph could be described by an infinite number of
different €2 values
* Hence aliasing: the same signal can be described by
different “names”.



Aliasing

In our example, we had:

1.001 ¢ [ ]

0.75 1
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xa[n] = cos(2.27n) s l | |
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z1[n] = cos(0.27n)
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x3[n| = cos(4.27n) !
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These all represent the exact same signal! They are all
aliases for that signal.

Consider we obtained x,[n], x,[n], x;[n] by sampling from continuous time signals, if a sampling rate fs of 5000 Hz was
used, what frequency (® or f) should the original continuous time signal has?



Base band i

Sl

Multiple frequencies €2 that we could use to refer to this signal

We can remove the ambiguity of which frequency is represented by a set of
samples by choosing the one in the range 0 < Q) < .

We call that range of frequencies the base band of frequencies, and the
value of Q) that falls in that range is often referred to as the principle alias.



Maximum Frequency

If we limit our attention to frequencies in the base band,
then there is a maximum possible discrete frequency

Note this difference from CT, where there is no maximum
frequency.



Let’s compute maximum frequency: Nyquist frequency

If a CT signal z(t) = coswt is sampled at times t = nAT, the
resulting DT signal is x[n] = cos Qn where

Q= wAT
If we restrict DT frequencies to the range 0 < Q2 <, then

the corresponding CT frequencies are in the range
0 <w < wpy Where

715
WN — —
AT
and
WN 1 1
In=o-=o57 3

The Nyquist frequency is basically half the sampling rate.




Anti-Aliasing

* If there are frequencies in the CT signal that are greater than the
Nyquist frequency, they will alias to frequencies in the base band (that
really don’t have anything to do with the original frequency!)

* Anti-aliasing to prevent distortions: remove frequencies above Nyquist
frequency before sampling so that they won’t alias into the base band

Sampling Music
‘ J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

fN =%fs Nathan Milstein, violin
No anti-aliasing with anti-aliasing
e f =5.5kHz
* f.=2.8kHz



Quantization

The information content of a signhal depends not only with sample rate but
also with the number of bits used to represent each sample.

2 bits 3 bits 4 bits
Uo Vo Uo

Bit rate = (# bits/sample) x(# samples/sec)



Check yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

{ How many bits are needed to represent this range?

5 bits
10 bits
20 bits
30 bits
40 bits

N




Quantization demonstration in music

16 bits/sample 3

bits/sample

3 bits

-1

0 1
Input voltage

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin
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Quantization of Images

8 bit 100% 5 bit 63% 4 bit 50%

3 bit 38% 2 bit 25% 1 bit 13%




Summary

* Converting continuous time signals into discrete signals
»Sampling
»Quantization
* Important new concepts:
»Sampling rate (sampling frequency) f,
»Base band, Nyquist frequency
» Aliasing and Anti-aliasing

We will now go to 4-370 for recitation & common hour
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