6.300 Signal Processing

Week 2, Lecture A:
Continuous-Time Fourier Series (Trig Form)

* Fourier Series
* Convergence of Fourier Series
 Symmetry of Fourier Series

Lecture slides are available on CATSOOP:
https://sigproc.mit.edu/fall24



Last time: Two different ways of looking at a signal

* E.g. Two representations of a speech signal:

“Frequency” domain
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* Today: we will focus on Continuous-time Fourier series



Fourier Series

Series: representing a signal as a sum of simpler signals.

* Taylor or Maclaurin’s series * Draw only with circles
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* Fourier series are sums of harmonically related sinusoids:
00

f(t) = Z(ck cos(kwyt) + dj, sin(kwgt))
k=0



Why focus on Fourier Series

* What'’s so special about sines and cosines?

» Sinusoidal functions have interesting mathematical properties.
»Harmonically related sinusoids are orthogonal to each other over [0, T]

* Average over a period:

bl to+T ——
/ sin (ﬁt> dt =0 J cos(ﬁt)dt= {T lfk_.o
5 T to T 0 otherwise
* Orthogonality of the basis functions:
e 2nk 2mm
/ sin (Tt) cos (Tt> dt =0 k and m are positive integers
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s i T 0 otherwise
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B T ¢ 0 otherwise



Why focus on Fourier Series

* Sines and cosines have interesting mathematical properties — orthogonality.

* Sines and cosines also play important roles in physics — especially the physics of waves.

Vibrating string Light waves Electrical waves
— stretched string
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Last time: Express periodic signals as a sum of sinusoids
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Periodic signal: f(t) = f(t + T) | CTFS: f(t) = c, di | Weights c;, for cos(kwgt)
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Decomposition:

f(t) = Z(ck cos(kwot) + dj sin(kwyt))
k=0



Continuous-Time Fourier Series (CTFS) Trig Form

* Synthesis equation

Fourier series are weighted sums of harmonically related sinusoids.
oo

F(t) = (e cos(kwot) + dj; sin(kwot))
le=0
where w, = 27T/T represents the fundamental frequency.

e Analysis equation
c —l/ F(t) dt
0 = T /s
w
Cpp = — / f(t) cos(kwot)dt; k=1,2,3,...
I Jp

5
d. = —/ f(t)sin(kwot)dt; k=1,2.3,...
I Jr



Check yourself!

 What are the Fourier series coefficients associated with the following signal?

f(t) = 0.8sin(67t) — 0.3 cos(67t) + 0.75 cos(127t)



Check yourself!

 What are the Fourier series coefficients associated with the following signal?

f(t) = 0.8sin(67t) — 0.3 cos(67t) + 0.75 cos(127t)

Wo = 6T
co =0

¢ =—0.3
co, = 0.75
d; =0.8

All the other ¢, ‘s and dj, 's are zero.



Example of synthesis

Find the Fourier series coefficients for the following triangle wave:

f(t) = f(t+2)




Example of synthesis

Find the Fourier series coefficients for the following triangle wave:

f(t) = f(t+2)

T 2
mz%/f@ﬁ=%ﬁf®ﬁ=—

i 2 kt 1 L
— —/ ) cos TRt = 2/ t cos(mkt) dt = { — kodd
T/2 .

di. =0 (by symmetry)

0 k=246,...



Example of synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

- 1 = 4

Flt) = co+ ;_:1 (¢t cos(kwot) + di sin(kwot)) = 5 kz_: 7 cos(kmi)
k odd
0
1 4

f(t) = 5~ Z 572 cos(kmt)

k=1

k odd

f(t)
| | | | l
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Example of synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

- 1 . 4
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Example of synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

- _ 1 = 4
f(t)=co+ ; (ex cos(kwot) + di sin(kwot)) = 5~ k; 372 cos(kt)
k odd
1 19 4
f(t) = 5~ Z 372 cos(kt)
k=1
k odd




Example of synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

— , 1 = 4
f(t) =co+ Z (¢ cos(kwot) + di sin(kwot)) = ' Z 572 cos(kt)
k=1 k=1
k odd
1 il 4
ft)=5- D —5cos(knt)
k=1
k odd
f(t)
\I/I\l/l\l/t
—2 —1 0 1 2

The synthesized function approaches original as number of terms increases.



Can Fourier Series approximate any periodic signals?
f(t) = Z:(c,c cos(kwgt) + dj, sin(kwyt))
k=0

Periodicsignal: f(t) = f(t + T) Basis function cos(kwgt)
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What about discontinuous functions?

T he previous example shows that the sum of an infinite number of sinusoids
can approximate a piecewise linear function with discontinuous slope!

T his result is a bit surprising since none of the basis functions have discon-
tinuous slopes.

What about signals with discontinuous values?

f(t) =co+ Z (ck cos(kwot) + di sin(kwot))

k=1
P PN PN PPN PPN TN N P /ﬂf(f)
NGNS Nl Nl Nl N Nl . . . 1/2 _
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A debate two hundred years ago...

Fourier defended the idea that such a series is meaningful.
Lagrange ridiculed the idea that discontinuities could be generated from a
sum of continuous signals.

Q: What do you think?

Jean-Baptiste Joseph Fourier Joseph-Louis Lagrange



We can test this idea empirically — using computation

* Find the Fourier series coefficients for the following square wave:

f(t) = f(t+2)
1 —




We can test this idea empirically — using computation

* Find the Fourier series coefficients for the following square wave:

f(t) = f(t+2)

1 —
t
=72
T 2T B = _/ f(t)d / f
o — T =T
CrL =— / f(t) cos(kw,t) dt: /COS(kﬂ't)d sm(kmt) =0fork=1,23,..
0 km |,
N d krt) |1 2 g
dy=r [ F(t)sin(hwgt) di— / e { Z k=1,3,5,..
° 0 km o 0  otherwise




Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:

f(t) =co+ Z (e cos(kwot) + d sin(kwyt)) =

k=1 k=1
k odd
1 0 2
ft) =5+ > . sin(krt)
k=1
k odd
f(t)




Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:

o0 . 1 @) 2 .
f(t) =co+ ; (e cos(kwot) + d sin(kwyt)) = 5 + Z o= sin(kmt)

k=1
k odd
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k=1
k odd
f(t)
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Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:

f(t) =co+ Z (e cos(kwot) + d sin(kwyt)) =

k=1 k=1
k odd
1 S 2
ft) =5+ > . sin(krt)
k=1
k odd
f(t)
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Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:

o0 . 1 @) 2 .
f(t) =co+ ; (e cos(kwot) + d sin(kwyt)) = 5 + Z o= sin(kmt)




Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:

f(t) =co+ Z (e cos(kwot) + d sin(kwyt)) =

k=1 k=1
k odd
1 ) 2
ft) =5+ > . sin(krt)
k=1
k odd
f(t)




Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:
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Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:

f(t) =co+

1
2

(e cos(kwot) + d sin(kwyt)) =

gt

Z — sm (kmt)

k;—l
k odd




Fourier Synthesis of a Square Wave

* Generate f(t) from the Fourier coefficients in the previous slide:

@)
2
f(t) =co+ ) (cxcos(kwot) + disin(kwyt)) = kZ k_ n(kwt)

k o

l\.’)l}—‘
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The synthesized function approaches original as number of terms increases.




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.

1 0 2
flt)=5+ > - sin(knt)
k=1
k odd f(t)
I I I I t
—2 —1 0 1 2
1.09
0.91




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.

F(t) =%+ > kisin(kwt)

s




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.

F(t) =%+ > %sm(kwt)
k=1
k odd f(t)
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Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.
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Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.

LN

F(t) =%+ > - sin(knt)
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Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.

1
§-|- Z —sm (kmt)

k = 1
k odd f(t)
[ [ I t
—2 —1 0 1 2
1.09
0.91 /’\"’




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.
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F(t) =%+ > %sin(kwt)
k=1
k odd f(t)
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Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at ¢t = 0.

199
flt)=5+ > - sin(knt)

km

k=1
k odd f(t)
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Increasing the number of terms does not decrease the peak overshoot,

but it does shrink the region of time that is occupied by the overshoot.




Convergence of Fourier Series

If there is a step discontinuity in f(t) at t = o, then the Fourier series for
f(to) converges to the average of the limits of f(f) as t approaches ty from
the left and from the right.

Let fK(t) represent the partial sum of the Fourier series using just N

terms:
K

[ (t) = aog+ Z ((k cos(kwot) + dy. sin(kwot))
k=0
As K — o0,
e the maximum difference between f(t) and fx(t) converges to ~ 9% of
F(t) — f(t5)] and
e the region over which the absolute value of the difference exceeds any
small number € shrinks to zero.

We refer to this type of overshoot as Gibb’s Phenomenon.

So who was right? Fourier or Lagrange?




Can any periodic signals be represented by Fourier Series

f(t) =co+ Z (ck cos(kwot) + di sin(kwot))
k=1
x(t)

1/2 -

0 1

45

Dirichlet conditions:

* Over any period, f(t) absolutely integrable;

* In any finite interval of time, f(t) is of bounded
variation

Jean-Baptiste Joseph Fourier Joseph-Louis Lagrange * Inany finite interval of time, there are only a
finite number of discontinuities, each

Who was right? Participation question for Lecture discontinuity is finite

In a way both were right. The series representation of a
discontinuous function converges, but no uniformly.



Gibb’s Phenomenon

Gibbs artifacts in MRI

Q1: Why these happens?
Q2: How to alleviate Gibbs artifacts?

https://mriquestions.com/gibbs-artifact.html

Decreasing artifacts with more
frequency components

Pseudo-
syrinx




Properties of Fourier Series: Symmetry

* Find the Fourier series coefficients for the following square wave:

f(t) = f(t+2)

1 —
t
=72
T 27 B = _/ f(t)d / f
o — T =T
/ f(t) cos(kw,t) dt /COS(kﬂ't)d sm(kmt) =0fork=1,23,..
0 km |,
N d krt) |1 2 g
dy=r [ F(t)sin(hwgt) di— / e { Z k=1,3,5,..
° 0 km o 0  otherwise




Properties of Fourier Series: Symmetry

* Find the Fourier series coefficients for the following square wave:

f(t) = f(t+2)

1 —
-------------------------------------------------------- t  Why are the C, coefficients
i zero (except c,)?
—2 2
T =2
2 = _/ f(t)d / f
Wo — T — 9
/ f(t) cos(kw,t) dt: /COS(kﬂ't)d sm(kmt) =l fork=I1L2 8 ..
0 km 0
T 1 L 9
== | £ sin(kuot) di= / e { m k=135,
0 0 km g 0 otherwise

If without ¢y = = “DC” part, f(t) is antisymmetric around t=0, thus only having non-zero d;, s
0= 3 k




Symmetric and Antisymmetric Parts in CTFS

sin(x)

k=1

f(t) =co+ > (ckcos(kwot) + di sin(kwot)) \ )

f(=t) =co+ Z(ck cos(kwot) — dj sin(kwyt))
k=1

X
| 3\‘

cos(x) _ w
37

* ¢;.’s (cosines) alone only represent the symmetric part of the signal.

* d;, ’'s (sines) alone only represent the antisymmetric part of the signal.

f()+ f(—=t) () = f@®)—f(=0

fs(t) = >

The symmetric part shows up in the ¢, coefficients, and the antisymmetric

part shows up in the d;, coefficients.




The other example

Find the Fourier series coefficients for the following triangle wave:

f(t) = f(t+2)

Which coefficients are zero?
Which are non-zero?



The other example

Find the Fourier series coefficients for the following triangle wave:

ft) = f(t+2)

¥ 2
%:%/f@ﬁzéﬁf@ﬁ:_

i 2 kt 1 L
— —/ ) cos TRt = 2/ t cos(mkt) dt = { — kodd
T/2 .

dp =0 (by symmetry)

0  k=24,6,...



Summary

* We examined the convergence of Fourier Series
» Functions with discontinuous slopes well represented

» Functions with discontinuous values generate ripples
» Gibb’s phenomenon.

* We looked at the symmetry properties of Fourier Series

We will now go to 4-370 for recitation & common hour
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