
6.300 Signal Processing
Week 2, Lecture A: 

Continuous-Time Fourier Series (Trig Form)

• Fourier Series

• Convergence of Fourier Series 

• Symmetry of Fourier Series

Lecture slides are available on CATSOOP:

https://sigproc.mit.edu/fall24



Last time: Two different ways of looking at a signal
• E.g. Two representations of a speech signal:

Time domain

“Frequency” domain

• Today: we will focus on Continuous-time Fourier series 



Fourier Series

• Fourier series are sums of harmonically related sinusoids:

Series: representing a signal as a sum of simpler signals. 

• Draw only with circles• Taylor or Maclaurin’s series

𝑓(𝑡) = ෍

𝑘=0

∞

𝑐𝑘 cos 𝑘𝜔0𝑡 + 𝑑𝑘 sin 𝑘𝜔0𝑡



Why focus on Fourier Series

• What’s so special about sines and cosines?

➢Sinusoidal functions have interesting mathematical properties. 
➢Harmonically related sinusoids are orthogonal to each other over [0, T]

• Orthogonality of the basis functions: 

k and m are positive integers
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• Average over a period:



Why focus on Fourier Series

Vibrating string Light waves

• Sines and cosines have interesting mathematical properties – orthogonality.

• Sines and cosines also play important roles in physics – especially the physics of waves.

Electrical waves



Last time: Express periodic signals as a sum of sinusoids

Periodic signal: 𝑓 𝑡 = 𝑓(𝑡 + 𝑇) CTFS: 𝑓 𝑡 → 𝑐𝑘, 𝑑𝑘

• Fundamental period: T

• Fundamental frequency: ω0 = 
2𝜋

𝑇
 

Basis function cos 𝑘𝜔0𝑡  

𝜔0

2𝜔0

3𝜔0

4𝜔0

…

Harmonically related: 𝜔= 𝑘𝜔0 

Weights 𝑐𝑘 for cos 𝑘𝜔0𝑡

𝑘

Decomposition: 

𝑓(𝑡) = ෍

𝑘=0

∞

𝑐𝑘 cos 𝑘𝜔0𝑡 + 𝑑𝑘 sin 𝑘𝜔0𝑡



Continuous-Time Fourier Series (CTFS) Trig Form

• Analysis equation

• Synthesis equation



Check yourself!
• What are the Fourier series coefficients associated with the following signal?

?

𝑐𝑘 =?

𝑑𝑘 =?



Check yourself!
• What are the Fourier series coefficients associated with the following signal?

6𝜋

𝑐0 = 0

𝑐1 = −0.3

𝑐2 = 0.75

𝑑1 = 0.8

All the other 𝑐𝑘
′𝑠 and 𝑑𝑘

′𝑠 are zero.
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Example of synthesis



Can Fourier Series approximate any periodic signals?

Periodic signal: 𝑓 𝑡 = 𝑓(𝑡 + 𝑇)

• Fundamental period: T

• Fundamental frequency: ω0 = 
2𝜋

𝑇
 

Basis function cos 𝑘𝜔0𝑡  

𝜔0

2𝜔0

3𝜔0

4𝜔0

…

Harmonically related: 𝜔= 𝑘𝜔0 

𝑓(𝑡) = ෍

𝑘=0

∞

𝑐𝑘 cos 𝑘𝜔0𝑡 + 𝑑𝑘 sin 𝑘𝜔0𝑡



What about discontinuous functions?

Continuous → discontinuous ?



A debate two hundred years ago…

Joseph-Louis Lagrange

No way

Jean-Baptiste Joseph Fourier

Not a problem

Q: What do you think?



We can test this idea empirically – using computation

• Find the Fourier series coefficients for the following square wave:



We can test this idea empirically – using computation

• Find the Fourier series coefficients for the following square wave:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:



Fourier Synthesis of a Square Wave
• Generate f(t) from the Fourier coefficients in the previous slide:
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Fourier Synthesis of a Square Wave



Fourier Synthesis of a Square Wave

Gibb’s Phenomenon



Convergence of Fourier Series



Can any periodic signals be represented by Fourier Series

Jean-Baptiste Joseph Fourier Joseph-Louis Lagrange

Dirichlet conditions: 
• Over any period, f(t) absolutely integrable; 
• In any finite interval of time, f(t) is of bounded 

variation
• In any finite interval of time, there are only a 

finite number of discontinuities, each 
discontinuity is finiteWho was right? 

In a way both were right. The series representation of a 
discontinuous function converges, but no uniformly.  

Participation question for Lecture



Gibb’s Phenomenon
Gibbs artifacts in MRI

Decreasing artifacts with more 
frequency components

https://mriquestions.com/gibbs-artifact.html

Q2: How to alleviate Gibbs artifacts?
Q1: Why these happens?



Properties of Fourier Series: Symmetry
• Find the Fourier series coefficients for the following square wave:



Properties of Fourier Series: Symmetry
• Find the Fourier series coefficients for the following square wave:

If without 𝑐0 =
1

2
 “DC” part,  𝑓 𝑡  is antisymmetric around t=0, thus only having non-zero 𝑑𝑘 ’s 

t Why are the Ck coefficients 
zero (except c0)?



Symmetric and Antisymmetric Parts in CTFS

𝑓𝑆 𝑡 =
𝑓 𝑡 + 𝑓(−𝑡)

2
𝑓𝐴 𝑡 =

𝑓 𝑡 − 𝑓(−𝑡)

2

The symmetric part shows up in the 𝑐𝑘 coefficients, and the antisymmetric 
part shows up in the 𝑑𝑘 coefficients.

• 𝑐𝑘’s (cosines) alone only represent the symmetric part of the signal. 

• 𝑑𝑘 ’s (sines) alone only represent the antisymmetric part of the signal.

sin(𝑥) cos(𝑥)

𝑓 −𝑡 = 𝑐0 + ෍

𝑘=1

∞

(𝑐𝑘 cos 𝑘𝜔0𝑡 − 𝑑𝑘 sin 𝑘𝜔0𝑡 )
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The other example

Which coefficients are zero? 
Which are non-zero?
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The other example



Summary

• We examined the convergence of Fourier Series
➢Functions with discontinuous slopes well represented

➢Functions with discontinuous values generate ripples
➢Gibb’s phenomenon.

• We looked at the symmetry properties of Fourier Series

We will now go to 4-370 for recitation & common hour
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