6.300 Signal Processing

Week 2, Lecture A: Continuous-Time Fourier Series (Trig Form)

- Fourier Series
- Convergence of Fourier Series
- Symmetry of Fourier Series

Lecture slides are available on CATSOOP: https://sigproc.mit.edu/fall24

Last time: Two different ways of looking at a signal

• E.g. Two representations of a speech signal:

0.5

0.0

-0.5

-1.0

0.0

0.5

1.0

"Frequency" domain

• Today: we will focus on Continuous-time Fourier series

Fourier Series

Series: representing a signal as a sum of simpler signals.

• Taylor or Maclaurin's series

• Draw only with circles

• Fourier series are sums of harmonically related sinusoids: $f(t) = \sum_{k=0}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t))$

Why focus on Fourier Series

• What's so special about sines and cosines?

Why focus on Fourier Series

- Sines and cosines have interesting mathematical properties orthogonality.
- Sines and cosines also play important roles in physics especially the physics of waves.

Last time: Express periodic signals as a sum of sinusoids

Periodic signal:
$$f(t) = f(t+T)$$
 CTFS: $f(t) \rightarrow c_k, d_k$
Weights c_k for $\cos(k\omega_0 t)$
 $f(t) = \sum_{k=0}^{2\pi} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t))$
Periodic signal: $f(t) = f(t+T)$ CTFS: $f(t) \rightarrow c_k, d_k$
Weights c_k for $\cos(k\omega_0 t)$
 $f(t) = \sum_{k=0}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t))$

Continuous-Time Fourier Series (CTFS) Trig Form

• Synthesis equation

• Analysis equation

Check yourself!

• What are the Fourier series coefficients associated with the following signal?

 $f(t) = 0.8\sin(6\pi t) - 0.3\cos(6\pi t) + 0.75\cos(12\pi t)$

$$\omega_o = ?$$

 $c_k = ?$
 $d_k = ?$

Example of synthesis

Find the Fourier series coefficients for the following triangle wave:

Can Fourier Series approximate any periodic signals?

$$f(t) = \sum_{k=0}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t))$$

Periodic signal:
$$f(t) = f(t + T)$$

• Fundamental frequency: $\omega_0 = \frac{2\pi}{T}$

Basis function $\cos(k\omega_0 t)$

What about discontinuous functions?

A debate two hundred years ago...

Fourier defended the idea that such a series is meaningful.

Lagrange ridiculed the idea that discontinuities could be generated from a sum of continuous signals.

We can test this idea empirically – using computation

• Find the Fourier series coefficients for the following square wave:

Convergence of Fourier Series

If there is a **step discontinuity** in f(t) at $t = t_0$, then the Fourier series for $f(t_0)$ converges to the average of the limits of f(t) as t approaches t_0 from the left and from the right.

Let $f_K(t)$ represent the **partial sum** of the Fourier series using just N terms:

$$f_K(t) = a_0 + \sum_{k=0}^{K} \left(c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t) \right)$$

As $K o \infty$,

- the maximum difference between f(t) and $f_K(t)$ converges to $\approx 9\%$ of $|f(t_0^+)-f(t_0^-)|$ and
- the region over which the absolute value of the difference exceeds any small number ϵ shrinks to zero.

We refer to this type of overshoot as Gibb's Phenomenon.

So who was right? Fourier or Lagrange?

Gibb's Phenomenon

Gibbs artifacts in MRI

Decreasing artifacts with more frequency components

0.3

0.6

0.4

0.2

1

Q1: Why these happens? Q2: How to alleviate Gibbs artifacts?

https://mriquestions.com/gibbs-artifact.html

Properties of Fourier Series: Symmetry

• Find the Fourier series coefficients for the following square wave:

The other example

Find the Fourier series coefficients for the following triangle wave:

Which coefficients are zero? Which are non-zero?

Summary

- We examined the convergence of Fourier Series
 - ➢ Functions with discontinuous slopes
 - ➤Functions with discontinuous values
 - ➤ Gibb's phenomenon.
- We looked at the symmetry properties of Fourier Series

We will now go to 4-370 for recitation & common hour