6.300 Signal Processing

Week 2, Lecture A:
Continuous-Time Fourier Series (Trig Form)

* Fourier Series
* Convergence of Fourier Series
 Symmetry of Fourier Series

Lecture slides are available on CATSOOP:
https://sigproc.mit.edu/fall24



Last time: Two different ways of looking at a signal

* E.g. Two representations of a speech signal:
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* Today: we will focus on Continuous-time Fourier series



Fourier Series

Series: representing a signal as a sum of simpler signals.

* Taylor or Maclaurin’s series * Draw only with circles
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* Fourier series are sums of harmonically related sinusoids:
00

f(t) = Z(ck cos(kwyt) + dj, sin(kwgt))
k=0



Why focus on Fourier Series

* What'’s so special about sines and cosines?



Why focus on Fourier Series

* Sines and cosines have interesting mathematical properties — orthogonality.

* Sines and cosines also play important roles in physics — especially the physics of waves.



Last time: Express periodic signals as a sum of sinusoids
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Decomposition:

f(t) = Z(ck cos(kwot) + dj sin(kwyt))
k=0



Continuous-Time Fourier Series (CTFS) Trig Form

* Synthesis equation

e Analysis equation



Check yourself!

 What are the Fourier series coefficients associated with the following signal?

f(t) = 0.8sin(67t) — 0.3 cos(67t) + 0.75 cos(127t)



Example of synthesis

Find the Fourier series coefficients for the following triangle wave:

f(t) = f(t+2)




Can Fourier Series approximate any periodic signals?
f(t) = Z:(c,c cos(kwgt) + dj, sin(kwyt))
k=0

Periodicsignal: f(t) = f(t + T) Basis function cos(kwgt)
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What about discontinuous functions?



A debate two hundred years ago...

Fourier defended the idea that such a series is meaningful.
Lagrange ridiculed the idea that discontinuities could be generated from a
sum of continuous signals.

Q: What do you think?

Jean-Baptiste Joseph Fourier Joseph-Louis Lagrange



We can test this idea empirically — using computation

* Find the Fourier series coefficients for the following square wave:

f(t) = f(t+2)
1 —




Convergence of Fourier Series

If there is a step discontinuity in f(t) at t = o, then the Fourier series for
f(to) converges to the average of the limits of f(f) as t approaches ty from
the left and from the right.

Let fK(t) represent the partial sum of the Fourier series using just N

terms:
K

[ (t) = aog+ Z ((k cos(kwot) + dy. sin(kwot))
k=0
As K — o0,
e the maximum difference between f(t) and fx(t) converges to ~ 9% of
F(t) — f(t5)] and
e the region over which the absolute value of the difference exceeds any
small number € shrinks to zero.

We refer to this type of overshoot as Gibb’s Phenomenon.

So who was right? Fourier or Lagrange?




Gibb’s Phenomenon

Gibbs artifacts in MRI

Q1: Why these happens?
Q2: How to alleviate Gibbs artifacts?

https://mriquestions.com/gibbs-artifact.html

Decreasing artifacts with more
frequency components

Pseudo-
syrinx




Properties of Fourier Series: Symmetry

* Find the Fourier series coefficients for the following square wave:

f(t) = f(t+2)

1

i

What coefficients are zero
and why?



The other example

Find the Fourier series coefficients for the following triangle wave:

f(t) = f(t+2)

Which coefficients are zero?
Which are non-zero?



Summary

* We examined the convergence of Fourier Series
» Functions with discontinuous slopes

> Functions with discontinuous values
» Gibb’s phenomenon.

* We looked at the symmetry properties of Fourier Series

We will now go to 4-370 for recitation & common hour
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