6.300 Signal Processing Week 1, Lecture B: Signal Processing

- Overview of the subject
- Signals: Definitions, examples, and operations
- Time and Frequency Representations
- Fourier Series

Lecture slides are available on CATSOOP: https://sigproc.mit.edu/fall24

What is 6.300?

- 6.300 is about signal processing.
- What is a signal?
	- A signal is a function that conveys information
- What is signal processing?
	- Identifying signals in physical, mathematical, computation contexts
	- Analyzing signals to understand the information they contain
	- Manipulating signals to modify the information they contain

At the end of this class

- Learn to identify signals in physical, mathematical, computation contexts
- Signals are functions that contain and convey information.
- Examples:
	- medical (EKG, EEG, MRI, OCT)
	- speech signals
	- music
	- images
	- video
	- seismic signals

At the end of this class

- Analyzing signals to understand the information they contain
- Learn to think of signals in frequency domain (in addition to time, space, …)
	- Mathematical analysis and physical understanding

Music analysis **Speech processing**

At the end of this class

- Learn to manipulate signals to modify the information they contain
- Learn to apply signal processing theories to real-life applications
	- Problem formulation, design, coding
	- Music, speech, photography, video streaming, astronomy, biomedicine…

Motion artifacts Image restoration

Image/video compression

Signal Processing

Signal Processing is widely used in science and engineering to ...

- model some aspect of the world,
- analyze the model,
- interpret results to gain a new or better understanding.

Signal Processing provides a common language across disciplines.

Get the most out of 6.300!

- Course website: CAT-SOOP (detailed policies).
- Lecture: TR2 (3-270)
	- Live questions in lecture (5% graded based on effort or weigh into final exam)
- Recitation: TR3 (32-141)
	- Live questions in recitation (5% graded based on effort or weigh into final exam)
- Piazza: **Only** for logistic questions
- Common-room hours: Monday-Friday 4-5pm, Monday & Wednesday 7-9pm
- Homework: posted Thursdays at 4pm; Lab check-in due the following Mondays at 9pm; Pset due the following Wednesdays 10pm
	- Psets: focus on developing problem solving skills simple computational extensions to real-world data (15%). Drop one lowest-scored Psets.
	- Labs: focus on applications of 6.300 to real-world problems more open-ended, multiple approaches, multiple solutions (5%+10%). **Start early!**
	- Two quizzes and a final (15% +20%+35% or 15% +20%+25%+10%)

Signals: independent variable

• Signals are functions that contain and convey information.

 \boldsymbol{y}

• Questions: Independent vs. dependent variable?

brightness (x, y)

 \boldsymbol{x}

Signals: dependent variable

• Dependent variable can be real, imaginary, or complex-valued

• Why complex?

Signals: Continuous vs. Discrete

Physical signals are often of continuous domain:

- continuous time (in seconds)
- continuous spatial coordinates (in meters)

Computations manipulate functions of discrete domain:

- discrete time (in samples)
- discrete spatial coordinates (in pixels)

brightness (x, y) \boldsymbol{y}

Examples?

Signals: Periodic vs Aperiodic

• Periodic signals consist of repeated cycles (periods). Important for analysis later.

Examples?

Signals: Symmetric vs Antisymmetric

• Signals can be symmetric or antisymmetric, or neither symmetric/antisymmetric at all!

Important for analysis and intuition building later

Check yourself

• Before listening to the manipulated signals, can you think what should f(2t), -f(t) and 1/3f(t) look and sound like?

Music sounds as signals

- Signals are functions that contain and convey information
- Example: a musical sound can be represented as a function of time.

• Although this time function is a complete description of the sound, it does not expose many of the important properties of the sound.

Music sounds as signals of time

• Even though these sounds have the same pitch, they sound different.

• It's not clear how the differences relate to properties of the signals. (audio clips from http://theremin.music.uiowa.edu)

Music sounds as signals of frequency

• Transform: reveal important properties of the signal (otherwise hidden in time domain)

Same pitch, they sound different. Why?

The harmonic structures of notes from different instruments are different.

Music signals as sum of sinusoids

• How: One way to characterize differences between these signals is express them each as a sum of sinusoids

$$
f(t) = \sum_{k=0}^{\infty} (c_k \cos k\omega_o t + d_k \sin k\omega_o t)
$$

• Since these sounds are (nearly) periodic, the frequencies of the dominant sinusoids are (nearly) integer multiples of a **fundamental** frequency ω_0

Harmonic structure

• The sum of sinusoids describes the distribution of energy across frequencies

$$
f(t) = \sum_{k=0}^{\infty} (c_k \cos k\omega_o t + d_k \sin k\omega_o t) = \sum_{k=0}^{\infty} m_k \cos (k\omega_o t + \phi_k)
$$

where $m_k^2 = c_k^2 + d_k^2$ and $\tan \phi_k = \frac{d_k}{c_k}$.

• Transform: signal of continuous time \rightarrow signal of discrete harmonic numbers

• The distribution represents the **harmonic structure** of the signal.

Harmonic structure

• The harmonic structures of note from different instruments are different.

• Some musical qualities are more easily seen in time, others in frequency

Express each signal as a sum of sinusoids

$$
f(t) = \sum_{k=0}^{\infty} m_k \cos(k\omega_o t + \phi_k)
$$

= $m_1 \cos(\omega_o t + \phi_1) + m_2 \cos(2\omega_o t + \phi_2) + m_3 \cos(3\omega_o t + \phi_3) + \cdots$

• Two views: as a function of time and as a function of frequency

Fourier representations of signals

• Fourier series are sums of harmonically related sinusoids.

$$
f(t) = \sum_{k=0}^{\infty} (c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t))
$$

where $\omega_o = 2\pi/T$ represents the fundamental frequency.

Basis functions:

- Q1: Under what conditions can we write $f(t)$ as a Fourier series?
- Q2: How do we find the coefficients c_k , d_k ?

Fourier series can only represent periodic signals

All harmonics of ω_o ($\cos(k\omega_o t)$ or $\sin(k\omega_o t)$) are periodic in $T = 2\pi/\omega_o$. \rightarrow all sums of such signals are periodic in $T = 2\pi/\omega_o$.

 \rightarrow Fourier series can only represent periodic signals.

Fourier series can only represent periodic signals

- Definition: a signal $f(t)$ is **periodic** in T if
	- $f(t) = f(t + T)$ for all t
- Note: if a signal is periodic in T it is also periodic in $2T$, $3T$, ...
- The smallest positive number T_0 for which $f(t) = f(t + T_0)$ for all t is sometimes called the **fundamental period. Fundamental** frequency ω_0
- If a signal does not satisfy $f(t) = f(t + T)$ for any value of T, then the signal is **aperiodic**.

$$
f(t+T) = \sum_{k=0}^{\infty} \left(c_k \cos\left(k \omega_0(t+T) \right) + d_k \sin\left(k \omega_0(t+T) \right) \right) = f(t)
$$

Q2: How do we find the coefficients

$$
f(t) = c_0 + \sum_{k=1}^{\infty} \left(c_k \cos\left(\frac{2\pi k}{T}t\right) + d_k \sin\left(\frac{2\pi k}{T}t\right) \right) \qquad f(t) = c_0 + \sum_{k=1}^{\infty} \left(c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t) \right)
$$

• How to sift out coefficients?

Preliminaries: Sinusoids

• Average over a period:

$$
\int_{t_0}^{t_0+T} \sin\left(\frac{2\pi k}{T}t\right) dt = 0 \qquad \qquad \int_{t_0}^{t_0+T} \cos\left(\frac{2\pi k}{T}t\right) dt = \begin{cases} T & \text{if } k = 0\\ 0 & \text{otherwise} \end{cases}
$$

• Orthogonality of the basis functions:

k and m are positive integers

• Orthogonality of the basis functions:

A product of sinusoids can be expressed as sum and difference frequencies.
\n
$$
\cos(k\omega_o t)\cos(l\omega_o t) = \frac{1}{2}\cos((k-l)\omega_o t) + \frac{1}{2}\cos((k+l)\omega_o t)
$$
\n
$$
\sin(k\omega_o t)\cos(l\omega_o t) = \frac{1}{2}\sin((k-l)\omega_o t) + \frac{1}{2}\sin((k+l)\omega_o t)
$$

sine basis functions
\n
$$
\overrightarrow{G} \qquad \qquad \overrightarrow{G} \qquad
$$

$$
\int_{t_0}^{t_0+T} \cos\left(\frac{2\pi k}{T}t\right) \cos\left(\frac{2\pi m}{T}t\right) dt = \begin{cases} T/2 & \text{if } k=m, \\ 0 & \text{otherwise} \end{cases}
$$

$$
\int_{t_0}^{t_0+T} \sin\left(\frac{2\pi k}{T}t\right) \sin\left(\frac{2\pi m}{T}t\right) dt = \begin{cases} T/2 & \text{if } k=m, \\ 0 & \text{otherwise} \end{cases}
$$

$$
\int_{t_0}^{t_0+T} \sin\left(\frac{2\pi k}{T}t\right) \cos\left(\frac{2\pi m}{T}t\right) dt = 0
$$

$$
\int_{t_0}^{t_0+T} \sin\left(\frac{2\pi k}{T}t\right) \cos\left(\frac{2\pi m}{T}t\right) dt = 0
$$

Q2: How do we find the coefficients

$$
f(t) = c_0 + \sum_{k=1}^{\infty} \left(c_k \cos\left(\frac{2\pi k}{T}t\right) + d_k \sin\left(\frac{2\pi k}{T}t\right) \right) \qquad f(t) = c_0 + \sum_{k=1}^{\infty} \left(c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t) \right)
$$

- How to sift out coefficients?
	- Key idea: by multiplying with each basis function and integrate over the period T.

Q: What will happen?

Integrate both sides over T :

$$
\int_0^T f(t) dt = \int_0^T c_0 dt + \int_0^T \left(\sum_{k=1}^\infty (c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t)) \right) dt
$$

= $Tc_0 + \sum_{k=1}^\infty (c_k \int_0^T \cos(k\omega_o t) dt + d_k \int_0^T \sin(k\omega_o t) dt) = Tc_0$

All but the first term integrates to zero, leaving

$$
c_0 = \frac{1}{T} \int_0^T f(t) dt.
$$

This $k=0$ term represents the average ("DC") value.

How do we find c_k

• Isolate the c_l term by multiplying both sides by cos($l\omega_o t$) before integrating.

$$
f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t))
$$

$$
\int_0^T f(t) \cos(l\omega_o t) dt = \int_0^T c_0 \cos(l\omega_o t) dt
$$

$$
+ \sum_{k=1}^{\infty} \int_0^T c_k \left(\frac{1}{2} \cos((k-l)\omega_o t) + \frac{1}{2} \cos((k+l)\omega_o t)\right) dt
$$

$$
+ \sum_{k=1}^{\infty} \int_0^T d_k \left(\frac{1}{2} \sin((k-l)\omega_o t) + \frac{1}{2} \sin((k+l)\omega_o t)\right) dt
$$

A product of sinusoids can be expressed as sum and difference frequencies.

$$
\cos(k\omega_o t)\cos(l\omega_o t) = \frac{1}{2}\cos((k-l)\omega_o t) + \frac{1}{2}\cos((k+l)\omega_o t)
$$

$$
\sin(k\omega_o t)\cos(l\omega_o t) = \frac{1}{2}\sin((k-l)\omega_o t) + \frac{1}{2}\sin((k+l)\omega_o t)
$$

How do we find c_k

• Isolate the c_l term by multiplying both sides by $cos(l\omega_o t)$ before integrating.

$$
f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t))
$$

$$
\int_0^T f(t) \cos(l\omega_o t) dt = \int_0^T c_0 \cos(t\omega_o t) dt + \sum_{k=1}^{\infty} \int_0^T c_k \left(\frac{1}{2} \cos((k-l)\omega_o t) + \frac{1}{2} \cos((k+l)\omega_o t)\right) dt + \sum_{k=1}^{\infty} \int_0^T d_k \left(\frac{1}{2} \sin((k-l)\omega_o t) + \frac{1}{2} \sin((k+l)\omega_o t)\right) dt
$$

All of the other d_k terms are harmonic.

The only non-zero term on the right side is $\frac{T}{2}c_l$. We can solve to get an expression for c_l as

$$
c_l = \frac{2}{T} \int_0^T f(t) \cos(l\omega_o t) dt
$$

Calculating Fourier Coefficients : dk

• Analogous reasoning allows us to calculate the d_k coefficients, but this time multiplying by sin(*lω^o t*) before integrating.

$$
f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t))
$$

$$
\int_0^T f(t) \sin(l\omega_o t) dt = \int_0^T c_0 \sin(l\omega_o t) dt
$$

$$
+ \sum_{k=1}^{\infty} \int_0^T c_k \cos(k\omega_o t) \sin(l\omega_o t) dt
$$

$$
+ \sum_{k=1}^{\infty} \int_0^T d_k \sin(k\omega_o t) \sin(l\omega_o t) dt
$$

A single term remains after integrating, allowing us to solve for d_l as $d_l = \frac{2}{T} \int_0^T f(t) \sin(l\omega_o t) dt$

Calculating Fourier Coefficients

• Summarizing . . .

If $f(t)$ is expressed as a Fourier series

$$
f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_o t) + d_k \sin(k\omega_o t))
$$

the Fourier coefficients are given by

$$
c_0 = \frac{1}{T} \int_T f(t) dt
$$

$$
c_k = \frac{2}{T} \int_T f(t) \cos(k\omega_o t) dt; \quad k = 1, 2, 3, \dots
$$

$$
d_k = \frac{2}{T} \int_T f(t) \sin(k\omega_o t) dt; \ k = 1, 2, 3, \dots
$$

Find the Fourier series coefficients for the following triangle wave:

Generate $f(t)$ from the Fourier coefficients in the previous slide.

$$
f(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \frac{1}{2} - \sum_{\substack{k=1\\k \text{ odd}}}^{\infty} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

$$
f(t) = \frac{1}{2} - \sum_{\substack{k=1\\k \text{ odd}}}^{0} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

Generate $f(t)$ from the Fourier coefficients in the previous slide.

$$
f(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^{\infty} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

$$
f(t) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^1 \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

Generate $f(t)$ from the Fourier coefficients in the previous slide.

$$
f(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \frac{1}{2} - \sum_{\substack{k=1\\k \text{ odd}}}^{\infty} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

$$
f(t) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^3 \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

Generate $f(t)$ from the Fourier coefficients in the previous slide.

$$
f(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^{\infty} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

$$
f(t) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^5 \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

Generate $f(t)$ from the Fourier coefficients in the previous slide.

$$
f(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \frac{1}{2} - \sum_{\substack{k=1\\k \text{ odd}}}^{\infty} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

$$
f(t) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^{\mathcal{Y}} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

Generate $f(t)$ from the Fourier coefficients in the previous slide.

$$
f(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^{\infty} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

$$
f(t) = \frac{1}{2} - \sum_{\substack{k=1 \ k \text{ odd}}}^{19} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

Generate $f(t)$ from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

$$
f(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \frac{1}{2} - \sum_{\substack{k=1\\k \text{ odd}}}^{\infty} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

$$
f(t) = \frac{1}{2} - \sum_{\substack{k=1\\k \text{ odd}}}^{99} \frac{4}{\pi^2 k^2} \cos(k\pi t)
$$

The synthesized function approaches original as number of terms increases.

Summary: Two views of the same signal

The harmonic expansion provides an alternative view of the signal.

$$
f(t) = \sum_{k=0}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)) = \sum_{k=0}^{\infty} m_k \cos(k\omega_0 t + \phi_k)
$$

We can view the musical signal as

- a function of time $f(t)$, or
- as a sum of harmonics with amplitudes m_k and phase angles ϕ_k .

Both views are useful. For example,

- the peak sound pressure is more easily seen in $f(t)$, while
- consonance is more easily analyzed by comparing harmonics.

This type of harmonic analysis is an example of **Fourier Analysis**, which is a major theme of this subject.

Recitation and common-room hours

- Live question for the lecture
	- What's your favorite type of signal? Try to express it as a function.
- We will go to 32-141 today for recitation & common hour~
- Common room hours this week
	- https://sigproc.mit.edu/fall24/software