Filtering and Inverse Filtering

Applications of the 2D DFT:

\[
F[kx, ky] = \frac{1}{NxNy} \sum_{nx=0}^{Nx-1} \sum_{ny=0}^{Ny-1} f[nx, ny] e^{-j(\frac{2\pi kx nx}{Nx} + \frac{2\pi ky ny}{Ny})}
\]

\[
f[nx, ny] = \sum_{kr=0}^{Ny-1} \sum_{kc=0}^{Nx-1} F[kr, kc] e^{j(\frac{2\pi kr nx}{Nx} + \frac{2\pi kc ny}{Ny})}
\]

Filtering

One of the most important applications of the 2D DFT is in computing the responses of image processing systems.

- If a system is linear and time invariant, then its response to any input \(x[nx, ny]\) is \((x\circ h)[nx, ny]\) where \(h[nx, ny]\) is the unit-sample response of the system.

\[
x[nx, ny] \rightarrow \tilde{h}[nx, ny] \rightarrow (x\circ h)[nx, ny]
\]

Convolution follows directly from linearity and time-invariance.

Convolution can be implemented in the frequency domain.

\[
x[nx, ny] \xrightarrow{dft} X(\Omega_x, \Omega_y)
\]

\[
h[nx, ny] \xrightarrow{dft} H(\Omega_x, \Omega_y)
\]

\[
(h \ast x)[nx, ny] \xrightarrow{dft} H[\Omega_x, \Omega_y]X(\Omega_x, \Omega_y)
\]

Using the DFT speeds computation (but makes convolution “circular.”)

\[
x[nx, ny] \xrightarrow{fft} X[kx, ky]
\]

\[
h[nx, ny] \xrightarrow{fft} H[kx, ky]
\]

\[
(h \odot x)[nx, ny] \xrightarrow{fft} H[kx, ky]X[kx, ky]
\]

2D Filtering

How can we remove the high frequencies from this image.

One method is to transform, zero out the high-frequency components, and inverse transform.

```
from lib6003.fft import fft2, ifft2
from lib6003.image import png_read, show_image

f = png_read('bluegill.png')
R,C = f.shape
F = fft2(f)

for kr in range(-R//2,R//2+1):
    for kc in range(-C//2,C//2+1):
        if (kr**2+kc**2)**0.5 > 25:
            F[kr,kc] = 0
lowpassed = ifft2(F*HL)
show_image(lowpassed)
```

2D Filtering

Transform, zero out the high-frequency components, and inverse transform.

Zeroing out frequency components is equivalent to filtering by

\[
H_L[kr, kc] = \begin{cases}
1 & \text{if } \sqrt{k^2 + k'^2} \leq 25 \\
0 & \text{otherwise}
\end{cases}
\]

```
f = png_read('bluegill.png')
R,C = f.shape
F = fft2(f)
HL = numpy.zeros((R,C), dtype=complex)
for kr in range(-R//2,R//2+1):
    for kc in range(-C//2,C//2+1):
        if (kr**2+kc**2)**0.5 > 25:
            HL[kr,kc] = 1
lowpassed = ifft2(F*HL)
show_image(lowpassed)
```
2D Filtering
Find the 2D unit-sample response of this filter.

\[
\text{show_image(ift2(HL))}
\]

Step changes in \(|H_L[k_r, k_c]| \rightarrow \text{overshoot in } h_L[r, c]|: \text{Gibb’s phenomenon.}

2D Filtering
Consider using the following filter, which is a circularly symmetric version of the Hann window.

\[
H_{L2}[k_r, k_c] = \begin{cases}
\frac{1}{2} + \frac{1}{2} \cos \left(\pi \times \frac{\sqrt{k_r^2 + k_c^2}}{50} \right) & \text{if } \sqrt{k_r^2 + k_c^2} \leq 50 \\
0 & \text{otherwise}
\end{cases}
\]

HL2 = numpy.zeros((R,C),dtype=complex)
for kr in range(-R//2,R//2+1):
 for kc in range(-C//2,C//2+1):
 d = (kr**2+kc**2)**0.5
 if d<=50:
 HL2[kr,kc] = 0.5+0.5*cos(pi*d/50)
hanned = ifft2(F*HL2)
show_image(hanned)

Ripples are gone.

Comparing Filters
Filter 1

Filter 2

High-Pass Filtering
Use the same approaches to implement a high-pass filter.

\[
H_H[k_r, k_c] = 1 - H_L[k_r, k_c] = \begin{cases}
1 & \text{if } \sqrt{k_r^2 + k_c^2} > 25 \\
0 & \text{otherwise}
\end{cases}
\]

In the spatial domain, then, we have:

\[
h_H[r, c] = RC\delta[r, c] - h_L[r, c]
\]
High-Pass Filtering
Not surprisingly, results show the same rippling effect seen in LPF.

We can reduce the ringing artifacts by using $1 - H_2[k_r, k_c]$ instead.

Who Is This?
Look at this image with your eyes about a foot away from the screen. Then look again from a distance of six feet.

from Prof. Antonio Torralba

Filtering and Inverse Filtering
An important area of research in image processing is in inverse filtering, (also called deconvolution). The idea is to undo the effect of prior filtering.

\[
\hat{f}[r,c] = H_i[k_r,k_c] \times (H[k_r,k_c] \times f[k_r,k_c])
\]

Example: enhancing images from Hubble Space Telescope.
- $f[r,c]$ represents the unknown image of a distant galaxy and
- $h[r,c]$ represents distortions in the optics of the telescope.

Goal: design an inverse filter $h_i[r,c]$ so that $\hat{f}[r,c]$ approximates $f[r,c]$.

Inverse Filtering
One simple approach is to filter by the inverse of $H[k_r, k_c]$.

In the frequency domain:
\[
\hat{F}[k_r,k_c] = H_i[k_r,k_c] \times G[k_r,k_c] = H_i[k_r,k_c] \times (H[k_r,k_c] \times F[k_r,k_c])
\]

If $H_i[k_r,k_c] \times H[k_r,k_c] = 1$ then $\hat{F}[k_r,k_c] = F[k_r,k_c]$!

Letting $H_i[k_r,k_c] = \frac{1}{H[k_r,k_c]}$ is called inverse filtering.

Quite remarkable that you can design a system to undo the effect of a prior system. Think about how you might do “inverse convolution”!
But it’s simple (?) in the frequency domain.

Example: Motion Blur
Camera images are blurred by motion of the target.
The resulting motion blur can be modelled as the convolution.
Modelling Motion Blur
Assume that streaks in this image resulted from the blurring. There is an isolated streak near the point \(r=120, c=250 \) (approximate 19x6 pixels).

Inverse Filtering
Make an image \(h \) to represent the presumed blurring function.

Inverse Filtering
Here is the resulting inverse filtered image – not at all what we want. What went wrong?

Inverse Filtering
This image shows the magnitude of \(H \) (DFT of blur function).

Inverse Filtering
This image shows the magnitude of \(1/H \).
What causes the bright spots? Why are they a problem?

Deblurring
The bright spots in \(1/H \) come from points in \(H \) with values near zero.

Such bright spots dominate the result. Try limiting their magnitudes.

Method 1:
Start with \(G = 1/H \) but limit the magnitude of every point in \(G \) to 4:

```python
for kr in range(R):
    for kc in range(C):
        G[kr,kc] = 1/H[kr,kc]
        if abs(G[kr,kc])>4:
            G[kr,kc] *= 4/abs(G[kr,kc])
```
This deblurring filter works better: easy to read license number.

But there are many artifacts.

The form of the previous deblurring function is a bit arbitrary.

\[
\begin{align*}
X & \quad H & \quad Y \\
G & = \frac{1}{|H|^2 + C}
\end{align*}
\]

where \(C = 0.004 \) (chosen by trial and error).

Alternative deblurring function.

But there are still artifacts.

Much of the ringing results from circular convolution. Window edges in original image to reduce step change due to periodic extension.

Method 2:
Here is a frequently used alternative (a “Weiner filter”):

\[
G = \frac{1}{|H|^2 + C}
\]

Method 1 with and without windowing.

Method 2 with and without windowing.
Conclusions

In general, inverse filtering worked well. It allowed a clear view of the license plate which was otherwise not legible.

Problems with inverse filtering. Inverting $H[k_r, k_c]$ doesn't work well if $H[k_r, k_c]$ is near zero. Fortunately, there were only a few such points. Arbitrarily limiting the values of such points results in useful deblurring.

Problems with circular convolution. Circular convolution introduces enormous artifacts if the left and right (or top and bottom) edges differ in brightness. These artifacts can be reduced by windowing.

Remaining problems. The resulting images still suffer from ringing – presumably because of sharp discontinuities in the frequency representation of blurring.