Filtering in Streaming Applications

We will start at 8:05am Eastern.

If you have them, headphones are a good idea.

Next Tuesday (election day in the USA):
 → We will still hold all live sessions
 → Participation will not be monitored
 → Recording will be made available afterward
 → You are still encouraged to attend in person if possible

29 October 2020
Filtering Music

Consider a song (contained in `am_synth.wav`), consisting of three separate “voices,” each of which is band-limited:

- “bass”: 40-170 Hz
- “melody”: 170-370 Hz
- “harmony”: 370-750 Hz

How can we do this?
Now consider the same task, but with a recording of the same song played on guitars rather than on synthesized cosine waves (am.wav).

Predict how this same approach will perform on this recording.

And try it!
Filtering in a Streaming Application

In many applications, we don’t have the entire signal we want to process available to us at the start (we receive it a little bit at a time). Examples:

- a live speaker at an event
- streaming music online

How can we process these signals in a similar way, without access to the entire signal?
Short-time Fourier transforms are based on the analysis of a sequence of finite-length portions of an input signal.
Algorithm 1

Chop the input signal into pieces that are each of length N.

Filter each piece by zeroing FFT components outside passband.

Compare original to this new result.

How effective is this algorithm? How can it be improved?
Algorithm 1

Chop the input signal into pieces that are each of length N.
Filter each piece by zeroing FFT components outside passband.

Q: How effective is this algorithm?
A: Not very.

One major problem with this algorithm is that if you convolve window 0 with a filter, part of the result should fall into window 1. This is not possible with algorithm 1.
Overlap-Add Method

Algorithm 1’s big problem can be fixed with overlapping windows.

How does overlapping help? How would you choose s and N?
Overlap-Add Method

How does overlapping help? How would you choose s and N?

Fill each window with s samples of the input and $N-s$ zeros.

Then convolve each window with the filter and sum the windows.

Notice that the convolution of the filter with $x[0:s]$ must not fall outside $0 \leq n < N$. If it did, it would wrap around to the beginning of window 0.
Overlap-Add Method

Create a filter, but limit its unit sample response to some length L. Pad this unit sample response with some number s of zeros to create a unit sample response of length $N = L + s$.

$$N - L$$

Divide input signal into blocks of length s, which we pad with L zeros to produce a new window of length $N = s + L$.

Convert each length-N block to the frequency domain and multiply by the frequency-domain representation of the filter.

Convert this result back to the time domain. L partial values at the end of each block are added to L partial values at the beginning of the next block.
Overlap-Add: Graphical Depiction

\[N = 8192 \]
\[S = 8192 - 2048 \]
\[L = 2048 \]
Filter Design

Design a filter for the overlap-add method: \(s = 6144 \) and \(N = 8192 \). The filter should pass frequencies in the range \(\Omega_l < \Omega < \Omega_h \).

Method 1: \(N = 8192 \)

\[
X[k] = \begin{cases}
1 & \text{if } N \frac{\Omega_l}{2\pi} \leq |k| \leq N \frac{\Omega_h}{2\pi} \\
0 & \text{otherwise}
\end{cases}
\]

Method 2: \(N = 2048 \)

\[
X[k] = \begin{cases}
1 & \text{if } N \frac{\Omega_l}{2\pi} \leq |k| \leq N \frac{\Omega_h}{2\pi} \\
0 & \text{otherwise}
\end{cases}
\]

Method 3: Start with method 2.
Then take inverse FFT; zero-pad to \(N=8192 \), and take FFT.

Method 4: Start with method 1.
Then take inverse FFT, apply rectangular window with width 2048, and take FFT.
Design a filter for the overlap-add method: $s = 6144$ and $N = 8192$. The filter should pass frequencies in the range $\Omega_l < \Omega < \Omega_h$.

Ultimately we need a filter $H[k]$ of length $N = 8192$ (window size). However, $h[n]$ must be no longer than $N = 2048$ samples. Therefore, design a filter using $N = 2048$. Take the inverse transform. Pad to $N = 8192$ samples. Take the transform.

→ Could use method 3 or 4 (they are equivalent).
Filter Design

Design a bandpass filter to extract 170-340 Hz frequency region from signal sampled with $f_s = 44,100$ Hz with $N_f = 2048$.

![Diagram of filter coefficients $H_1[k]$ and impulse response $h_1[n]$]
Filter Design

Zero-pad to make filter length equal to window length.

\[h_2[n] \]

\[H_2[k] \]

Listen to result.
Filter Design

What was wrong with the previous method? How can we fix it?
Filter Design

Apply a triangular window $w[n]$.

Notice that $H_2[k]$ is now a smoother function of k.

$w[n]$

$h_2[n]$

$H_2[k]$

$H_2[k]$
Filter Design

Better yet, try a Hann window.

\[h_2[n] \]

0 \hspace{1cm} N_f \hspace{1cm} n \hspace{1cm} N_w

\[H_2[k] \]

- \frac{N_w}{2} \hspace{1cm} 0 \hspace{1cm} \frac{N_w}{2} \hspace{1cm} k

\[H_2[k] \]

-128 \hspace{1cm} -64 \hspace{1cm} -32 \hspace{1cm} 0 \hspace{1cm} 32 \hspace{1cm} 64 \hspace{1cm} 128 \hspace{1cm} k

\(H_2[k] \) is now even smoother.
Let’s try it!
Overlap-Add Method

Importantly, we can process the first window without waiting for the entire song to be transmitted – very important for streaming applications.

But, it turns out that this method also tends to be more efficient in normal applications as well!
Each FFT of length N contributes s samples to the output.

Number of windows $= N_x / s$.

Number of multiplies per window $\approx 2N \log_2(N)$
(only need to calculate frequency response once)

Total number of multiplies $\approx 2N_x \frac{N}{s} \log_2(N)$.

Typically $\frac{N}{s}$ is near 1 (it was $\frac{3}{4}$ in today’s example).

Total $\approx 2N_x \log_2(N)$.

Compared to $\approx 3N_x \log_2(N_x)$ for full-length FFTs.