6.003: Signal Processing

DTFT and Properties

- Math Preliminaries
- DTFT and Properties

24 September 2020
Squares

Squares that are 1×1, $a \times a$, $a^2 \times a^2$, etc., are arranged side-by-side as shown below.
Squares

Squares that are 1×1, $a \times a$, $a^2 \times a^2$, etc., are arranged side-by-side as shown below.

The upper left corners of these squares can be connected with a straight line.
Squares

Squares that are \(1 \times 1\), \(a \times a\), \(a^2 \times a^2\), etc., are arranged side-by-side as shown below.

The upper left corners of these squares can be connected with a straight line. Determine the slope of the blue line.
Power Square

Find the sum of the numbers in the infinite quadrant shown below, where \(a < 1 \).

\[
\begin{array}{cccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a^4 & a^5 & a^6 & a^7 & a^8 & \cdots \\
a^3 & a^4 & a^5 & a^6 & a^7 & \cdots \\
a^2 & a^3 & a^4 & a^5 & a^6 & \cdots \\
a^1 & a^2 & a^3 & a^4 & a^5 & \cdots \\
a^0 & a^1 & a^2 & a^3 & a^4 & \cdots \\
\end{array}
\]
Discrete-Time Fourier Transform

Synthesis Equation

\[x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega \]

Analysis Equation

\[X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n} \]
Discrete-Time Fourier Transform

Synthesis Equation

\[x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega \]

Analysis Equation

\[X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n} \]
Problem: Find the Fourier transform of the following signal.

\[x[n] = a^n u[n] \quad \text{where} \quad u[n] = \begin{cases}
1 & \text{if } n \geq 0 \\
0 & \text{otherwise}
\end{cases} \]

Sketch its magnitude and phase.
Inverse Discrete-Time Fourier Transform

Find the signal whose Fourier transform is

\[X(\Omega) = e^{-j3\Omega} \]
Discrete-Time Fourier Transform

Find the Fourier transforms of the following discrete-time signals.

- \(x_1[n] = a^n u[n] \) where \(u[n] = \begin{cases} 1 & \text{if } n \geq 0 \\ 0 & \text{otherwise} \end{cases} \)

- \(x_2[n] = a^{(n-n_0)} u[n - n_0] \)

- \(x_3[n] = \text{Sym}\{a^n u[n]\} \)

- \(x_4[n] = \text{Asym}\{a^n u[n]\} \)

- \(x_5[n] = na^n u[n] \)
Find the Fourier transform of

\[x_2[n] = a^{(n-n_0)} u[n - n_0] \]
Find the Fourier transform of

\[x_3[n] = \text{Sym}\{a^n u[n]\} \]
Find the Fourier transform of
\[x_4[n] = \text{Asym}\{a^n u[n]\} \]
Discrete-Time Fourier Transform

Find the Fourier transform of

\[x_5[n] = n a^n u[n] \]
Find the Fourier transform of $x_6[n]$:

$$x_6[n] = \begin{cases}
(a)^{n/2} & n = 0, 2, 4, 6, 8, \ldots, \infty \\
0 & \text{otherwise}
\end{cases}$$

Plot the magnitude and angle of $X_6(\Omega)$ versus Ω.
Discrete-Time Fourier Transform

\[x_6[n] = \begin{cases}
 (a)^{n/2} & n = 0, 2, 4, 6, 8, \ldots, \infty \\
 0 & \text{otherwise}
\end{cases} \]