6.003 Signal Processing

Week 10, Lecture A:
2D Signal Processing (I): 2D Fourier Representation
Signals: Functions Used to Convey Information

• Signals may have 1 or 2 or 3 or even more independent variables.

A 1D signal has a one-dimensional domain.
We usually think of it as time t or discrete time n.

A 2D signal has a two-dimensional domain.
We usually think of the domains as x and y or \(n_x \) and \(n_y \) (or r and c).
Signals from physical systems are often of continuous domain:
• continuous time – measured in seconds, etc
• continuous spatial coordinates – measured in meters, cm, etc

Computations usually manipulate functions of discrete domain:
• discrete time – measured in samples
• discrete spatial coordinates – measured in pixels
Sampling

Continuous “time” (CT) versus discrete “time” (DT)

\[x(t) \]

\[x[n] = x(n\Delta T) \]

\[\Delta T \text{ (seconds / sample)} = \text{sampling interval} \]
\[f_s \text{ (samples / second)} = \text{sampling rate} \]

Important for computational manipulation of physical data.
- digital representations of audio signals (as in MP3)
- digital representations of images (as in JPEG)
From Time to Space

So far, our signals have been a function of time: f(t), f[n]

Now, start to consider functions of space: f(x, y), f[r, c]

Our goal is still the same:
• Extract meaningful information from a signal,
• Manipulate information in a signal.
We still resort to Fourier representations for these purposes.

Turn now to development of “frequency domain” representations in 2D.
Fourier Representations
From “Continuous Time” to “Continuous Space.”

1D Continuous-Time Fourier Transform

\[
F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} \, dt \quad \text{Analysis equation}
\]

\[
f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{j\omega t} \, d\omega \quad \text{Synthesis equation}
\]

Two dimensional CTFT:

\[
F(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \cdot e^{-j(\omega_x x + \omega_y y)} \, dx \, dy
\]

\[
f(x, y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\omega_x, \omega_y) \cdot e^{j(\omega_x x + \omega_y y)} \, d\omega_x \, d\omega_y
\]

\(x\) and \(y\) are continuous spatial variables (units: cm, m, etc.)

\(\omega_x\) and \(\omega_y\) are spatial frequencies (units: radians / length)

- integrals \(\rightarrow\) double integrals;
- sum of \(x\) and \(y\) exponents in kernal function.
Fourier Representations

From “Discrete Time” to “Discrete Space.”

1D Discrete-Time Fourier Transform

\[
F(\Omega) = \sum_{n=-\infty}^{\infty} f[n] \cdot e^{-j\Omega n}
\]

Analysis equation

\[
f[n] = \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\Omega) \cdot e^{j\Omega n} \, d\Omega
\]

Synthesis equation

Two dimensional DTFT:

\[
F(\Omega_r, \Omega_c) = \sum_{r=-\infty}^{\infty} \sum_{c=-\infty}^{\infty} f[r, c] \cdot e^{-j(\Omega_r r + \Omega_c c)}
\]

\(r\) and \(c\) are discrete spatial variables (units: pixels)

\[
f[r, c] = \frac{1}{4\pi^2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} F(\Omega_r, \Omega_c) \cdot e^{j(\Omega_r r + \Omega_c c)} \, d\Omega_r \, d\Omega_c
\]

\(\Omega_r\) and \(\Omega_c\) are spatial frequencies (units: radians / pixel)

• sum → double sums; integral → double integrals;
• sum of \(r\) and \(c\) exponents in kernal function.
Fourier Representations

1D DFT to 2D DFT

1D Discrete Fourier Transform

\[F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] \cdot e^{-j \frac{2\pi k}{N} n} \]
\text{Analysis equation}

\[f[n] = \sum_{k=0}^{N-1} F[k] \cdot e^{j \frac{2\pi k}{N} n} \]
\text{Synthesis equation}

Two dimensional DFT:

\[F[k_r,k_c] = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} f[r,c] \cdot e^{-j\left(\frac{2\pi k_r}{R} r + \frac{2\pi k_c}{C} c\right)} \]
\(r\) and \(c\) are discrete spatial variables (units: pixels)

\[f[r,c] = \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} F[k_r,k_c] \cdot e^{-j\left(\frac{2\pi k_r}{R} r + \frac{2\pi k_c}{C} c\right)} \]
\(k_r\) and \(k_c\) are integers representing frequencies
Orthogonality

DFT basis functions are orthogonal to each other in 1D and 2D.

1D DFT basis functions: \(\phi_k[n] = e^{-j \frac{2\pi k}{N} n} \)

"Inner product" of 1D basis functions: See slide #9 of Lec 3B.

\[
\sum_{n=0}^{N-1} \phi^*_k[n] \phi_l[n] = \sum_{n=0}^{N-1} e^{j \frac{2\pi k}{N} n} \cdot e^{-j \frac{2\pi l}{N} n} = \sum_{n=0}^{N-1} e^{j \frac{2\pi (k-l)}{N} n} = \begin{cases}
N & \text{if } k = l \\
0 & \text{otherwise}
\end{cases}
(0 \leq k, l < N)
\]

2D DFT basis functions: \(\phi_{k_r,k_c}[r, c] = e^{-j \frac{2\pi k_r}{R} r} e^{-j \frac{2\pi k_c}{C} c} \)

"Inner product" of 2D basis functions:

\[
\sum_{r=0}^{R-1} \sum_{c=0}^{C-1} \phi^*_{k_r,k_c}[r, c] \phi_{l_r,l_c}[r, c] = \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} \left(e^{j \frac{2\pi k_r}{R} r} \cdot e^{j \frac{2\pi k_c}{C} c} \right) \cdot \left(e^{-j \frac{2\pi l_r}{R} r} \cdot e^{-j \frac{2\pi l_c}{C} c} \right)
\]

\[
= \sum_{r=0}^{R-1} e^{j \frac{2\pi (k_r-l_r)}{R} r} \sum_{c=0}^{C-1} e^{j \frac{2\pi (k_c-l_c)}{C} c} = \begin{cases}
RC & \text{if } k_r = l_r \text{ and } k_c = l_c \\
0 & \text{otherwise}
\end{cases}
(0 \leq k_r, l_r < R, 0 \leq k_c, l_c < C)
\]
Python Representation of 2D Images

Calculating DFTs is most efficient in NumPy (Numerical Python).

- NumPy arrays are **homogeneous**: their elements are of the same type.
- NumPy operators (+, -, abs, .real, .imag) combine elements to create new arrays. e.g., (f+g)[n] is f[n]+g[n].
- 2D NumPy arrays can be indexed by tuples: e.g., f[r,c] = f[r][c].
- 2D NumPy arrays support **negative indices** as in lists: e.g., a[-1] = a[len(a)-1]
- 2D indices address row then column:

 \[
 \begin{array}{cccccc}
 f[0, 0] & f[0, 1] & f[0, 2] & f[0, 3] & \cdots \\
 f[1, 0] & f[1, 1] & f[1, 2] & f[1, 3] & \cdots \\
 \cdots & \cdots & \cdots & \cdots & \cdots \\
 \end{array}
 \]

NumPy indexing is consistent with **linear algebra** (row first then column with rows increasing downward and columns increasing to the right). But it differs from physical mathematics (x then y with x increasing to the right and y increasing upward). You may do calculations either way, but be mindful of this difference.
Python Representation of 2D Images

We provide methods in the `lib6003.image` module for saving/loading PNG images:

- `png_read(filename)` loads an image from a file into a NumPy array
- `png_write(array, filename)` saves image data to a file
- `show_image(array)` displays an image

Arrays are indexed in row, column order, and the values are brightness, usually in the range [0, 1]

Example: Make a white square on a black background.

```python
import numpy
from lib6003.image import show_image
f = numpy.zeros((64, 64))
for r in range(16, 48):
    for c in range(16, 48):
        f[r, c] = 1
show_image(f, zero_loc='topleft')
```

We also provide functions for computing 2D DFTs in the `lib6003.fft` module: `fft2` and `ifft2`

In the frequency domain, index 0, 0 into a Numpy array corresponds to $k_r = 0, k_c = 0$ (the DC component).
Check yourself!

The 2D DFT basis functions have the form

$$\phi_{k_r,k_c}[r,c] = e^{-j \frac{2\pi k_r}{R} r} e^{-j \frac{2\pi k_c}{C} c}$$

Which (if any) of the following images show the real part of one of the basis functions $\phi_{k_r,k_c}[r,c]$?

(0,0) is at top left corner, black correspond to lowest value, white correspond to highest value.

What values of k_r and k_c correspond to each basis function?
Check yourself!

The 2D DFT basis functions have the form:

\[\phi_{k_r,k_c}[r,c] = e^{-j\frac{2\pi k_r}{R} r} e^{-j\frac{2\pi k_c}{C} c} \]

\[= \cos \left(\frac{2\pi k_r}{R} r + \frac{2\pi k_c}{C} c \right) - j\sin \left(\frac{2\pi k_r}{R} r + \frac{2\pi k_c}{C} c \right) \]

If \(\frac{2\pi k_r}{R} r + \frac{2\pi k_c}{C} c \) is constant, the real and imaginary parts will be constant.

Example: Let \(k_r = 3 \) and \(k_c = -4 \) when \(R = C = 128 \).

Then the exponent is \(\frac{2\pi 3}{128} r - \frac{2\pi 4}{128} c \). This exponent is zero if \(3r = 4c \).

If the exponent is zero, then cosine is at its peak value of 1.

Thus the real part of the 2D basis function is 1 along the line \(r = \frac{4}{3} c \).

Therefore the real part of the 2D basis function will be 1 along the lines \(r = -\frac{k_c}{k_r} c \).
The 2D DFT basis functions have the form

\[\phi_{k_r,k_c}[r,c] = e^{-j \frac{2\pi}{R} kr} e^{-j \frac{2\pi}{C} kc} \]

\[\text{Re}(\phi_{k_r,k_c}[r,c]) = \cos \left(\frac{2\pi}{R} kr + \frac{2\pi}{C} kc \right) \]

Which (if any) of the following images show the real part of one of the basis functions \(\phi_{k_r,k_c}[r,c] \)?
A and B

(0,0) is at top left corner, black correspond to lowest value, white correspond to highest value.

What values of \(k_r \) and \(k_c \) correspond to each basis function?

A: (4,3) or (-4,-3); B: (3,4) or (-3,-4); C: none; D: none
Fourier Transform Pairs

In 1D, we found that it was useful to know how the transforms of simple shapes looked (for example delta \rightarrow constant), in part because it was often possible to use that understanding to simplify thinking about bigger problems.

The same will be true in 2D!

The rest of today: 2D Fourier analysis of simple shapes.
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:

\[f[r, c] = \delta[r]\delta[c] = \begin{cases} 1, & r = 0 \text{ and } c = 0 \\ 0, & \text{otherwise} \end{cases} \]

\[F[k_r, k_c] = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} \delta[r]\delta[c] \cdot e^{-j\left(\frac{2\pi k_r}{R} r + \frac{2\pi k_c}{C} c\right)} \]

\[= \frac{1}{RC} e^{-j\left(\frac{2\pi k_r}{R} 0 + \frac{2\pi k_c}{C} 0\right)} \]

\[= \frac{1}{RC} \]

\[\delta[r]\delta[c] \xrightarrow{\text{DFT}} \frac{1}{RC} \]

1D unit sample

\[f[n] = \delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{otherwise} \end{cases} \]

\[F[k] = \frac{1}{N} \sum_{n=0}^{N-1} \delta[n] \cdot e^{-j\frac{2\pi k n}{N}} = \frac{1}{N} \]
2D Discrete Fourier Transform

Generally, implement a 2D DFT as a sequence of 1D DFTs:

$$F[k_r, k_c] = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} f[r, c] \cdot e^{-j\left(\frac{2\pi k_r r}{R} + \frac{2\pi k_c c}{C}\right)}$$

$$= \frac{1}{R} \sum_{r=0}^{R-1} \left(\frac{1}{C} \sum_{c=0}^{C-1} f[r, c] \cdot e^{-j\frac{2\pi k_c c}{C}} \right) \cdot e^{-j\frac{2\pi k_r r}{R}}$$

- First, obtain the DFT for each row
- Then, take the DFT of each resulting columns

Alternatively, we can start with columns and then do rows just as well.
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:

\[f[r, c] \]

Magnitude

Angle
Example: Find the DFT of a 2D unit sample:

\[f[r, c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:

\[f[r, c] \quad \xrightarrow{\text{DFT (rows)}} \quad k_c \]

Magnitude

\[r \quad \xrightarrow{c} \quad k_c \]

Angle

\[r \quad \xrightarrow{c} \quad k_c \]
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:

\[f[r, c] \]
Example: Find the DFT of a 2D unit sample:

- **Magnitude**
 - **$f[r, c]$**
 - **DFT (rows)**

- **Angle**
 - **$f[r, c]$**
 - **DFT (rows)**
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:

\[f[r, c] \rightarrow \text{DFT(rows)} \rightarrow k_c \]

Magnitude

\(r \rightarrow \) \(k_c \)

Angle

\(r \rightarrow \) \(k_c \)
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:
Example: Find the DFT of a 2D unit sample:
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:
2D Discrete Fourier Transform

Example: Find the DFT of a 2D constant.

\[f[r, c] = 1 \]

\[
F[k_r, k_c] = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} 1 \cdot e^{-j \left(\frac{2\pi k_r r}{R} + \frac{2\pi k_c c}{C} \right)} = \frac{1}{RC} \sum_{r=0}^{R-1} e^{-j \frac{2\pi k_r r}{R}} \sum_{c=0}^{C-1} e^{-j \frac{2\pi k_c c}{C}}
\]

And we know:

\[
\sum_{c=0}^{C-1} e^{-j \frac{2\pi k_c c}{C}} = \begin{cases} C, & k_c = 0 \\ 0, & \text{otherwise} \end{cases} \quad \sum_{r=0}^{R-1} e^{-j \frac{2\pi k_r r}{R}} = \begin{cases} R, & k_r = 0 \\ 0, & \text{otherwise} \end{cases}
\]

\[
F[k_r, k_c] = \frac{1}{RC} \cdot R \cdot \delta[k_r] \cdot C \cdot \delta[k_c] = \delta[k_c] \delta[k_r]
\]

1D constant

\[f[n] = 1 \]

\[
F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] \cdot e^{-j \frac{2\pi k n}{N}}
\]

\[
= \frac{1}{N} \sum_{n=0}^{N-1} e^{-j \frac{2\pi k n}{N}}
\]

\[
= \begin{cases} 1, & k = 0 \\ 0, & \text{otherwise} \end{cases}
\]

\[DFT \quad 1 \rightarrow \delta[k_r] \delta[k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a constant.

\[f[r, c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a constant.

$f[r, c]$
2D Discrete Fourier Transform

Example: Find the DFT of a constant.

\[f[r, c] \]

\[\text{DFT (rows)} \]

Magnitude

\[r \rightarrow c \rightarrow k_c \]

\[r \rightarrow r \]

Angle

\[r \rightarrow c \rightarrow k_c \]

\[r \rightarrow r \]
Example: Find the DFT of a constant.
2D Discrete Fourier Transform

Example: Find the DFT of a constant.

$$f[r, c]$$

DFT (rows)

$$F[k_r, k_c]$$
2D Discrete Fourier Transform

Example: Find the DFT of a constant.

\[f[r, c] \]

DFT(rows)

\[F[k_r, k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a constant.
2D Discrete Fourier Transform

Example: Find the DFT of a constant.
2D Discrete Fourier Transform

Example: Find the DFT of a vertical line.

\[f[r, c] = \delta[c] = \begin{cases} 1, & c = 0 \\ 0, & \text{otherwise} \end{cases} \]

\[F[k_r, k_c] = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} \delta[c] \cdot e^{-j\left(\frac{2\pi k_r r}{R} + \frac{2\pi k_c c}{C}\right)} = \frac{1}{RC} \sum_{r=0}^{R-1} e^{-j\left(\frac{2\pi k_r r}{R} + \frac{2\pi k_c 0}{C}\right)} = \frac{1}{RC} \sum_{r=0}^{R-1} e^{-j\left(\frac{2\pi k_r r}{R}\right)} \]

And:

\[\sum_{r=0}^{R-1} e^{-j\frac{2\pi k_r}{R} r} = \begin{cases} R, & k_r = 0 \\ 0, & \text{otherwise} \end{cases} \]

\[F[k_r, k_c] = \frac{1}{RC} \cdot R \cdot \delta[k_r] = \frac{1}{C} \delta[k_r] \]

\[\delta[c] \xrightarrow{\text{DFT}} \frac{1}{C} \delta[k_r] \]
2D Discrete Fourier Transform

Example: Find the DFT of a vertical line:

$$f[r, c]$$
Example: Find the DFT of a vertical line:

\(f[r, c] \)
Example: Find the DFT of a vertical line:

$$f[r, c]$$

DFT (rows)

Magnitude

Angle
Example: Find the DFT of a vertical line:
2D Discrete Fourier Transform

Example: Find the DFT of a vertical line:

\[f[r, c] \rightarrow \text{DFT (rows)} \rightarrow F[k_r, k_c] \]

Magnitude

- Input: \(f[r, c] \)
- DFT (rows): \(k_c \)
- Output: \(F[k_r, k_c] \)

Angle

- Input: \(f[r, c] \)
- DFT (rows): \(k_c \)
- Output: \(F[k_r, k_c] \)
2D Discrete Fourier Transform

Example: Find the DFT of a vertical line:

\[f[r, c] \xrightarrow{\text{DFT}} F[k_r, k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

\[f[r, c] = \delta[r] = \begin{cases} 1, & r = 0 \\ 0, & \text{otherwise} \end{cases} \]

\[F[k_r, k_c] = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} \delta[r] \cdot e^{-j\left(\frac{2\pi k_r r}{R} + \frac{2\pi k_c c}{C}\right)} = \frac{1}{RC} \sum_{c=0}^{C-1} e^{-j\left(\frac{2\pi k_r r}{R} + \frac{2\pi k_c c}{C}\right)} = \frac{1}{RC} \sum_{c=0}^{C-1} e^{-j\left(\frac{2\pi k_c c}{C}\right)} \]

Since:

\[\sum_{c=0}^{C-1} e^{-j\frac{2\pi k_c c}{C}} = \begin{cases} C, & k_c = 0 \\ 0, & \text{otherwise} \end{cases} \]

\[F[k_r, k_c] = \frac{1}{RC} \cdot C \cdot \delta[k_c] = \frac{1}{R} \delta[k_c] \]

\[\delta[r] \xrightarrow{DFT} \frac{1}{R} \delta[k_c] \]
Example: Find the DFT of a horizontal line:

\[f[r, c] \]
Example: Find the DFT of a horizontal line:
Example: Find the DFT of a horizontal line:

\[f[r, c] \]

Magnitude

\[r \]

Angle

\[r \]

DFT (rows)

\[k_c \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

$f[r, c] \quad DFT(\text{rows})$

Magnitude

Angle
Example: Find the DFT of a horizontal line:

\[f[r, c] \quad \text{DFT (rows)} \]

Magnitude

\[r \quad c \quad k_c \]

Angle

\[r \quad c \quad k_c \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

\[f[r, c] \quad \text{DFT (rows)} \quad F[k_r, k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

\[f[r, c] \]

\[\text{DFT(rows)} \]

\[F[k_r, k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

\[f[r, c] \]

\[\text{DFT (rows)} \]

\[F[k_r, k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

\[f[r, c] \rightarrow \text{DFT (rows)} \rightarrow F[k_r, k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

\[f[r, c] \]

\[\text{DFT (rows)} \]

\[F[k_r, k_c] \]
2D Discrete Fourier Transform

Example: Find the DFT of a horizontal line:

\[f[r, c] \quad \xrightarrow{\text{DFT}} \quad F[k_r, k_c] \]
Circularly Translating/Shifting an Image

Effect of image translation/shifting on its Fourier transform.

Assume that \[f_0[r, c] \xrightarrow{DFT} F_0[k_r, k_c] \]

Find the 2D DFT of \(f_1[r, c] = f_0[(r - r_0) \ mod \ R, (c - c_0) \ mod \ C] \)

\[
F_1[k_r, k_c] = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} f_1[r, c] \cdot e^{-j\left(\frac{2\pi k_r r}{R} + \frac{2\pi k_c c}{C}\right)}
\]

Let: \(l_r = (r - r_0) \ mod \ R, l_c = (c - c_0) \ mod \ C. \) Then:

\[
F_1[k_r, k_c] = \frac{1}{RC} \sum_{l_r=0}^{R-1} \sum_{l_c=0}^{C-1} f_0[l_r, l_c] \cdot e^{-j\left(\frac{2\pi k_r (l_r + r_0) \ mod \ R)}{R} + \frac{2\pi k_c (l_c + c_0) \ mod \ C}{C}\right)}
\]

\[= e^{-j\frac{2\pi k_r}{R} r_0} \cdot e^{-j\frac{2\pi k_c}{C} c_0} \cdot \frac{1}{RC} \sum_{l_r=0}^{R-1} \sum_{l_c=0}^{C-1} f_0[l_r, l_c] \cdot e^{-j\left(\frac{2\pi k_r l_r}{R} + \frac{2\pi k_c l_c}{C}\right)} = e^{-j\frac{2\pi k_r}{R} r_0} \cdot e^{-j\frac{2\pi k_c}{C} c_0} \cdot F_0[k_r, k_c] \]

Circularly translating an image adds linear phase to its transform.
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:

\[
f[r, c] = \delta[r]\delta[c] \Rightarrow F[k_r, k_c] = \frac{1}{RC}
\]
2D Discrete Fourier Transform

Example: Find the DFT of a shifted 2D unit sample.

\[f[r, c] = \delta[r]\delta[c - 1] \Rightarrow F[k_r, k_c] = e^{-j\frac{2\pi k_c}{c} \cdot 1} \frac{1}{RC} \]
2D Discrete Fourier Transform

Example: Find the DFT of a shifted 2D unit sample.

\[
f[r, c] = \delta[r] \delta[c - 2] \quad \Rightarrow \quad F[k_r, k_c] = e^{-j \frac{2\pi k_c}{c} \cdot 2} \frac{1}{RC}
\]
2D Discrete Fourier Transform

Example: Find the DFT of a shifted 2D unit sample.

\[
f[r, c] = \delta[r] \delta[c - 3] \quad \rightarrow \quad F[k_r, k_c] = e^{-j\frac{2\pi k_c}{c - 3}} \frac{1}{RC}
\]
2D Discrete Fourier Transform

Example: Find the DFT of a 2D unit sample:

\[f[r, c] = \delta[r] \delta[c] \rightarrow \mathcal{F}[k_r, k_c] = \frac{1}{RC} \]
2D Discrete Fourier Transform

Example: Find the DFT of a shifted 2D unit sample:

\[f[r, c] = \delta[r + 1] \delta[c] \Rightarrow F[k_r, k_c] = e^{-j \frac{2\pi k_r}{R} \left(\frac{1}{1} \right)} \frac{1}{RC} \]
Example: Find the DFT of a shifted 2D unit sample:

\[f[r, c] = \delta[r + 2]\delta[c] \rightarrow F[k_r, k_c] = e^{-j\frac{2\pi kr}{R}(-2)} \frac{1}{RC} \]
2D Discrete Fourier Transform

Example: Find the DFT of a shifted 2D unit sample:

\[
f[r, c] = \delta[r + 3] \delta[c] \quad \xrightarrow{\text{DFT}} \quad F[k_r, k_c] = e^{-j\frac{2\pi k_r}{R}(3)} \frac{1}{RC}
\]
Summary

Introduced 2D signal processing:
• Mostly simple extensions of 1D ideas
• Some small differences

Introduced 2D Fourier representations:
• Fourier kernel comprises the sum of an x part and a y part (or r, c)
• Basis functions look like sinusoids turned at angles determined by the ratio of k_c to k_r.

Multiple 2D Fourier Transform pairs:
• 2D unit sample \Rightarrow 2D constant
• 2D constant \Rightarrow 2D unit sample
• vertical line \Rightarrow horizontal line
• horizontal line \Rightarrow vertical line

(Circularly) translating an image does not change the magnitude but adds linear phase to its transform.