Discrete Fourier Transform

Adam Hartz
hz@mit.edu

8 October 2019
What is 6.003?

What is a signal?

Abstractly, a signal is a function that conveys information.

Signal processing is about extracting meaningful information from signals, and/or manipulating information to produce new signals.

What is a transform?

Provide multiple views/perspectives on a signal.

Some information more clearly visible (and/or more easily manipu-lable) from one perspective than another.
Why Fourier?

Sinusoids are nice!

• prevalent in nature
• relevant to human perception
• mathematically convenient (particularly as complex exponentials)

Example: what are the following sounds, and how do they differ?
So far, we have talked about four transforms, useful for analyzing different kinds of signals:

<table>
<thead>
<tr>
<th>Transform</th>
<th>Time Domain</th>
<th>Frequency Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTFS</td>
<td>continuous, periodic</td>
<td>discrete, aperiodic</td>
</tr>
<tr>
<td>DTFS</td>
<td>discrete, periodic</td>
<td>discrete, periodic</td>
</tr>
<tr>
<td>CTFT</td>
<td>continuous, aperiodic</td>
<td>continuous, aperiodic</td>
</tr>
<tr>
<td>DTFT</td>
<td>discrete, aperiodic</td>
<td>continuous, periodic</td>
</tr>
</tbody>
</table>

Four transforms already; why introduce another?
Consider DTFT

DTFT: DT signal $x[\cdot]$, CT spectrum $X(\cdot)$

$$
\begin{align*}
x[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega)e^{j\Omega n} \, d\Omega \\
X(\Omega) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}
\end{align*}
$$

Easiest to appreciate when $x[n]$ and $X(\Omega)$ are defined as mathematical expressions.

However, it would be great to define the spectrum of a signal $x[\cdot]$ even when $x[n]$ cannot be easily defined by a mathematical expression.

Indeed, it would be great to be able to write a computer program that could efficiently calculate the spectrum of an arbitrary signal from samples of that signal.
DFT (Discrete Fourier Transform) is discrete in both domains. Computationally feasible (opens doors to analyzing complicated signals).

Most modern signal processing is based on the DFT, and we’ll use the DFT almost exclusively moving forward in 6.003.
Sidenote: The FFT (Fast Fourier Transform) is an algorithm for computing the DFT efficiently (PSet 6).
Why Bother with the Others?

In part, because they inform our understanding / interpretation of the results of the DFT.

Our common goal with other science / engineering endeavors is to

- **model** some aspect of the world
- **analyze** the model, and
- **interpret** results to gain better understanding.

![Diagram](model-to-result-flowchart)

The computer is useless if we can’t interpret the results!
Today, we’ll introduce the Discrete Fourier Transform, examine some of its properties, and use it to explore an interesting problem.

Today’s problem: given a piece of music, determine its key.
Toward the DFT

Starting with the DTFT analysis equation:

\[X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \]

If a goal is computational feasibility, two things stand in the way:

- infinite sum
- continuous function of frequency

Solutions:

- only consider a finite number of samples in time, and
- only consider a finite number of frequencies.
Toward the DFT

Starting with the DTFT analysis equation:

\[X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \]

- only consider \(N \) samples
- take \(N \) uniformly spaced frequencies from the range \(0 \leq \Omega \leq 2\pi \)

The DFT:

\[X[k] = \frac{1}{N} X \left(\frac{2\pi k}{N} \right) = \frac{1}{N} \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi k}{N}n} \]
DFT: Definition

\[X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi k}{N} n} \]

\[x[n] = \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi k}{N} n} \]

Very similar in form to the other transforms we’ve seen (particularly the DTFS).
DFT: Comparison to Other Fourier Representations

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFT</td>
<td></td>
</tr>
<tr>
<td>$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi k}{N} n}$</td>
<td>$x[n] = \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi k}{N} n}$</td>
</tr>
<tr>
<td>DTFS</td>
<td></td>
</tr>
<tr>
<td>$X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j \frac{2\pi k}{N} n}$</td>
<td>$x[n] = \sum_{k=\langle N \rangle} X[k] e^{j \frac{2\pi k}{N} n}$</td>
</tr>
<tr>
<td>DTFT</td>
<td></td>
</tr>
<tr>
<td>$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}$</td>
<td>$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j \Omega n} d\Omega$</td>
</tr>
</tbody>
</table>

DTFS: $x[\cdot]$ is presumed to be periodic in N

DTFT: $x[\cdot]$ is arbitrary

DFT: only a portion of an arbitrary $x[\cdot]$ is considered
DFT and DTFS

If a signal is periodic in the DFT analysis period N, then the DFT coefficients are equal to the DTFS coefficients.

Consider $x_1[n] = \cos \left(\frac{2\pi n}{64} \right)$. When analyzed with $N = 64$, the DFT coefficients are:

$$X_1[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi k}{N} n} = \frac{1}{2} \delta[k - 1] + \frac{1}{2} \delta[k + 1]$$
DFT and DTFS

If a signal is **not** periodic in the DFT analysis period N, then there are no DTFS coefficients to compare.

Consider $x_2[n] = \cos\left(\frac{3\pi n}{64}\right)$. When analyzed with $N = 64$, the DFT coefficients are:

$$X_2[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi k}{N}n}$$

![Diagram showing DFT coefficients]

Even though $x_2[n]$ contains a single frequency $\Omega = 3\pi/64$, there are large components at every component k.
Although $x_2[n] = \cos \frac{3\pi n}{64}$ was not periodic in $N = 64$, we can define a signal $x_3[n]$ that is equal to $x_2[n]$ for $0 \leq n < 64$ and periodic in $N = 64$.

DFT coefficients of $x_2[n]$ equal the DTFS coefficients of $x_3[n]$. The large number of non-zero coefficients are necessary to produce the step discontinuity at $n = 64$.
DFT: Relation to DTFT

\[x[n] \]
DFT: Relation to DTFT

\[x[n] \]

\[x_{w}[n] = x[n]w[n] \]

window

\[x_{w}[n] \] for \(n = 0, 1, \ldots, N-1 \)
DFT: Relation to DTFT

$$x[n]$$

$$x_w[n] = x[n]w[n]$$

$$X_w(\Omega)$$

Windowing in the time domain leads to convolution in the frequency domain.
DFT: Relation to DTFT

\[x[n] \rightarrow \text{DFT} \rightarrow \frac{1}{N} X_w \left(\frac{2\pi k}{N} \right) \]

sample: \(\Omega \rightarrow \frac{2\pi k}{N} \)
scale: \(1/N \)

\[x_w[n] = x[n]w[n] \rightarrow \text{DTFT} \rightarrow X_w(\Omega) \]

\[0 \leq n \leq N-1 \]

\[-\pi \leq \Omega \leq \pi \]
Two Ways to Think About DFT

We can think about the DFT in a few different ways:

1. The DFT is equal to the DTFS of the periodic extension of the first N samples of a signal.

2. The DFT is equal to scaled samples of the DTFT of a “windowed” version of the original signal.

These views are equivalent, but they highlight different phenomena.
DFT: Properties

Very similar in form to the other transforms we’ve seen (particularly the DTFS), so lots of the usual properties hold (with some slight tweaks).

<table>
<thead>
<tr>
<th>Property</th>
<th>$y[n]$</th>
<th>$Y[k]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>$Ax_1[n] + Bx_2[n]$</td>
<td>$AX_1[k] + BX_2[k]$</td>
</tr>
<tr>
<td>Time Reversal</td>
<td>$x[N - n]$</td>
<td>$X[-k]$</td>
</tr>
<tr>
<td>Time Shift</td>
<td>$x[(n - n_0) \mod N]$</td>
<td>$e^{-j \frac{2\pi k_0}{N} n_0} X[k]$</td>
</tr>
<tr>
<td>Frequency Shift</td>
<td>$e^{j \frac{2\pi k_0}{N} n} x[n]$</td>
<td>$X[k - k_0]$</td>
</tr>
<tr>
<td>Conjugation</td>
<td>$x^*[n]$</td>
<td>$X^*[-k]$</td>
</tr>
</tbody>
</table>
Check Yourself!

Consider a waveform containing a single, pure sinusoid. This waveform was recorded with a sampling rate of 8kHz, and we have 60 samples of the waveform. Computing the DFT magnitudes, we find:

![DFT Magnitude Plot]

What note is being played? How accurately can we tell?
Frequency Resolution

We only have N distinct samples of the DTFT.

$$
\begin{array}{cccc}
-N/2 & 0 & N/2 & k \text{ (cycles/N)} \\
-\pi & 0 & \pi & \Omega \text{ (rad/sample)} \\
-f_s/2 & 0 & f_s/2 & f \text{ (cycles/sec)} \\
\end{array}
$$

We’re uniformly breaking up a range of 2π into N discrete samples: the spacing between samples is $\frac{2\pi}{N}$. The k^{th} coefficient is associated with $\Omega = \frac{2\pi k}{N}$.

In Hz, the spacing between samples is $\frac{f_s}{N}$. Thus, the k^{th} coefficient is associated with a frequency of $f = \frac{k f_s}{N}$.

Fundamental trade-off: increasing frequency resolution necessarily requires considering more samples of the signal (i.e., increasing N).
Check Yourself!

For the previous example (pure sinusoid, $f_s = 8$kHz), how many samples do we need to consider in order to be able to determine the frequency of the tone to within 1Hz? Within 0.1Hz?
Check Yourself!

For a portion of the Chopin song containing only one chord, 250332 samples long, and recorded with a sampling rate of 48kHz, the DFT magnitudes look like:

Peaks in magnitude around \(k \approx 1021, 1282, 1715, 2037, 2576, 3062, \ldots \)

What are the frequencies (in Hz) of the notes being played? What chord does this correspond to?
Summary

Today: introduced a new transform: the DFT.
• closely related to both DTFS and DTFT
• enables computational analysis of complicated signals

Recitation: practice with DFT, analyzing sounds

PSet: practice with DFT, implement FFT