Discrete-Time Fourier Series

- orthogonality of harmonically related DT sinusoids
- DT Fourier series relations
- differences between CT and DT Fourier series
- properties of DT Fourier series
Express a periodic signal as a sum of harmonically related sinusoids

\[x(t) = \sum_{k=0}^{\infty} \left(c_k \cos k\omega_o t + d_k \sin k\omega_o t \right) \]

where \(\omega_o \) represents the fundamental frequency.

Basis functions:
Continuous-Time Fourier Series

Separating harmonic components relies on two key observations.

1. Multiplying two harmonics produces a new harmonic with the same fundamental frequency:

\[e^{jk\omega_0 t} \times e^{jl\omega_0 t} = e^{j(k+l)\omega_0 t}. \]

2. The integral of a harmonic over any time interval with length equal to the period \(T \) is zero unless the harmonic is at DC:

\[
\int_{t_0}^{t_0+T} e^{jk\omega_0 t} dt \equiv \int_{T} e^{jk\omega_0 t} dt = \begin{cases} T & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases} = T\delta[k].
\]

→ Fourier components are orthogonal.
Continuous-Time Fourier Series

Assume that \(x(t) \) is periodic in \(T \) and is composed of a weighted sum of harmonics of \(\omega_0 = 2\pi/T \).

\[
x(t) = x(t + T) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 kt}
\]

Then “sift” out one component:

\[
\int_T x(t) e^{-j\omega_0 lt} dt = \int_T \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 kt} e^{-j\omega_0 lt} dt
\]

\[
= \sum_{k=-\infty}^{\infty} a_k \int_T e^{j\omega_0 (k-l)t} dt
\]

\[
= \sum_{k=-\infty}^{\infty} a_k T \delta[k - l] = a_l T
\]

Solving for \(a_l \) provides an explicit formula for the coefficients:

\[
a_k = \frac{1}{T} \int_T x(t) e^{-j\omega_0 kt} dt = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T} kt} dt \quad \text{where } \omega_0 = \frac{2\pi}{T}.
\]
Continuous-Time Fourier Series

Representing a periodic signal as a sum of harmonic sinusoids.

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

analysis equation

$$x(t) = x(t + T) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

synthesis equation

where $$\omega_0 = \frac{2\pi}{T}$$
Today: Discrete Time Fourier Series

Same high-level idea.

Express a periodic signal as a sum of harmonically related sinusoids

\[x[n] = \sum_{k=0}^{\infty} (c_k \cos k\Omega_o n + d_k \sin k\Omega_o n) \]

where \(\Omega_o \) represents the fundamental frequency (radians/sample).

Basis functions:
Discrete-Time Fourier Series

Separating harmonic components relies on the same two key points.

1. Multiplying two DT harmonics produces a new DT harmonic with the same fundamental frequency:

\[e^{jk\Omega_n} \times e^{jl\Omega_n} = e^{j(k+l)\Omega_n}. \]

2. The sum of a harmonic over any time interval with length equal to the period \(N \) is zero unless the harmonic is at DC:

\[
\sum_{n=n_0}^{n_0+N} e^{jk\Omega_n} \equiv \sum_{n=\langle N \rangle} e^{jk\Omega_n} = \begin{cases}
N & \text{if } k = 0 \\
0 & \text{if } k \neq 0
\end{cases} = N\delta[k].
\]

→ DT Fourier components are orthogonal.
Discrete-Time Fourier Series

Assume that $x[n]$ is periodic in N and is composed of a weighted sum of harmonics of $\Omega_o = 2\pi/N$.

\[x[n] = x[n + N] = \sum_k a_k e^{j\Omega_o kn} \]

Then “sift” out one component:

\[\sum_{n=\langle N \rangle} x[n] e^{-j\Omega_o ln} = \sum_{n=\langle N \rangle} \sum_k a_k e^{j\Omega_o kn} e^{-j\Omega_o ln} \]

\[= \sum_k a_k \sum_{n=\langle N \rangle} e^{j\Omega_o (k-l)n} \]

\[= \sum_k a_k N \delta[k - l] = a_l N \]

Solving for a_l provides an explicit formula for the coefficients:

\[a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\Omega_o kn} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j \frac{2\pi}{N} kn} \]

where $\Omega_o = \frac{2\pi}{N}$.
Discrete-Time Fourier Series

Representing a DT periodic signal as a sum of harmonic sinusoids.

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \Omega_0 n}$$

analysis equation

$$x[n] = x[n + N] = \sum_{k} a_k e^{j k \Omega_0 n}$$

synthesis equation

where \(\Omega_0 = \frac{2 \pi}{N} \)
Discrete-Time Fourier Series

Representing a DT periodic signal as a sum of harmonic sinusoids.

\[a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j k \Omega_o n} \]
analysis equation

\[x[n] = x[n + N] = \sum_k a_k e^{j k \Omega_o n} \]
synthesis equation

where \(\Omega_o = \frac{2\pi}{N} \)

DT Fourier series are similar to CT Fourier series ... but DT sinusoids **differ** from CT sinusoids in important ways!

How do CT/DT differences affect Fourier series?
What is the fundamental (shortest) period of each of the following signals?

1. $x_1[n] = \cos \frac{\pi n}{12}$

2. $x_2[n] = \cos \frac{\pi n}{12} + 3 \cos \frac{\pi n}{15}$

3. $x_3[n] = \cos n + \cos 2n + \cos 3n$
Check Yourself

\[x_1[n] = \cos \frac{\pi n}{12} = \cos \left(\frac{\pi n}{12} + 2\pi \right) = \cos \frac{\pi (n + 24)}{12} = x_1[n + 24] \]

\[x_2[n] = \cos \frac{\pi n}{12} + 3 \cos \frac{\pi n}{15} = \cos \left(\frac{\pi n}{12} + 10\pi \right) + 3 \cos \left(\frac{\pi n}{15} + 8\pi \right) \]

\[= \cos \frac{\pi (n + 120)}{12} + 3 \cos \frac{\pi (n + 120)}{15} = x_2[n + 120] \]

\[x_3[n] = \cos n + \cos 2n + \cos 3n \text{ is not periodic.} \]
Check Yourself

What is the fundamental (shortest) period of each of the following signals?

1. $x_1[n] = \cos \frac{\pi n}{12}$ \quad 24

2. $x_2[n] = \cos \frac{\pi n}{12} + 3 \cos \frac{\pi n}{15}$ \quad 120

3. $x_3[n] = \cos n + \cos 2n + \cos 3n$ \quad \infty
Check Yourself

What is the fundamental (shortest) period of each of the following signals?

1. $x_1[n] = \cos \frac{\pi n}{12}$ \hspace{1cm} 24

2. $x_2[n] = \cos \frac{\pi n}{12} + 3 \cos \frac{\pi n}{15}$ \hspace{1cm} 120

3. $x_3[n] = \cos n + \cos 2n + \cos 3n$ \hspace{1cm} \infty

The period of a periodic DT signal must be an integer.

Therefore the fundamental frequency of a periodic DT signal must be an integer submultiple of 2π.

No such constraints on fundamental frequencies in CT.
Discrete-Time Sinusoids

The frequencies of discrete-time sinusoids **alias**.

\[\Omega = 0.25 \]

\[x[n] = \cos(0.25n) \]

\[n \]
Discrete-Time Sinusoids

The frequencies of discrete-time sinusoids alias.

\[\Omega = 0.5 \]

\[x[n] = \cos(0.5n) \]
Discrete-Time Sinusoids

The frequencies of discrete-time sinusoids alias.

\[\Omega = 1 \]

\[x[n] = \cos(n) \]
Discrete-Time Sinusoids

The frequencies of discrete-time sinusoids alias.

\[\Omega = 2 \]

\[x[n] = \cos(2n) \]
The frequencies of discrete-time sinusoids alias.

\[\Omega = 3 \]

\[x[n] = \cos(3n) \]
Discrete-Time Sinusoids

The frequencies of discrete-time sinusoids alias.

\[\Omega = 4 \]

\[x[n] = \cos(4n) = \cos(2\pi - 4n) \approx \cos(2.283n) \]
Discrete-Time Sinusoids

The frequencies of discrete-time sinusoids alias.

\[\Omega = 5 \]

\[x[n] = \cos(5n) = \cos(2\pi - 5n) \approx \cos(1.283n) \]
Discrete-Time Sinusoids

The frequencies of discrete-time sinusoids alias.

\(\Omega = 6 \)

\[x[n] = \cos(6n) = \cos(2\pi - 6n) \approx \cos(0.283n) \]

There are multiple "frequencies" associated with every DT sinusoid. The frequencies of discrete-time sinusoids alias.
Discrete-Time Sinusoids

If \(\Omega_o \) is a submultiple of \(2\pi \), and the harmonic frequencies alias, then there are (only) \(N \) distinct complex exponentials with period \(N \). (There were an infinite number in CT!)

If \(y[n] = e^{j\Omega n} \) is periodic in \(N \) then

\[
y[n] = e^{j\Omega n} = y[n + N] = e^{j\Omega(n+N)} = e^{j\Omega n} e^{j\Omega N}
\]

and \(e^{j\Omega N} \) must be 1 \(\rightarrow \) \(e^{j\Omega} \) must be one of the \(N^{th} \) roots of 1.

Example: \(N = 8 \)
Discrete-Time Sinusoids

There are N distinct complex exponentials with period N.

If a DT signal is periodic with period N, then its Fourier series contains just N terms.

Example: periodic in $N=3$

3 samples repeated in time

Example: periodic in $N=4$

4 samples repeated in time
Discrete-Time Fourier Series

DT Fourier series comprise a weighted sum of just N harmonics.

$$x[n] = x[n + N] = \sum_{k=N}^{k=N} a_k e^{j\Omega_0 kn}$$
Discrete-Time Fourier Series

DT Fourier series comprise a weighted sum of just \(N \) harmonics.

\[
x[n] = x[n + N] = \sum_{k=\langle N \rangle} a_k e^{j\Omega_0 kn}
\]

Then “sift” out one component:

\[
\sum_{n=\langle N \rangle} x[n] e^{-j\Omega_0 ln} = \sum_{n=\langle N \rangle} \sum_{k=\langle N \rangle} a_k e^{j\Omega_0 kn} e^{-j\Omega_0 ln}
\]

\[
= \sum_{k=\langle N \rangle} a_k \sum_{n=\langle N \rangle} e^{j\Omega_0 (k-l)n}
\]

\[
= \sum_{k=\langle N \rangle} a_k N \delta[k-l] = a_l N
\]

Solving for \(a_l \) provides an explicit formula for the coefficients:

\[
a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\Omega_0 kn} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\frac{2\pi}{N} kn} \quad \text{where} \quad \Omega_0 = \frac{2\pi}{N}.
\]

Both \(x[n] \) and \(e^{-j\frac{2\pi}{N} kn} \) are periodic in \(N \), \(\therefore a_k \) is periodic in \(N \).
A periodic DT signal with \(N \) samples produces a periodic sequence of \(N \) Fourier series coefficients.

\[
a_k = a_{k+N} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n]e^{-jk\Omega_o n}
\]

\[
x[n] = x[n+N] = \sum_{k=\langle N \rangle} a_ke^{jk\Omega_o n}
\]

where \(\Omega_o = \frac{2\pi}{N} \)
Fourier Series Summary

CT and DT Fourier Series are similar, but DT Fourier Series have just N coefficients while CT Fourier Series have an infinite number.

Continuous-Time Fourier Series

$$a_k = \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t} dt$$

analysis equation

$$x(t) = x(t + T) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

synthesis equation

where $\omega_0 = \frac{2\pi}{T}$

Discrete-Time Fourier Series

$$a_k = a_{k+N} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n]e^{-jk\Omega_0 n}$$

analysis equation

$$x[n] = x[n + N] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n}$$

synthesis equation

where $\Omega_0 = \frac{2\pi}{N}$
Properties of Discrete-Time Fourier Series

Operations on the time representation of a signal can often be interpreted as equivalent operations on the series coefficients.

Example: Fourier series of a linear combination of signals

Proof: Let

\[x[n] = ax_1[n] + bx_2[n] \quad \text{where} \quad x_1[n] = x_1[n+N] \quad \text{and} \quad x_2[n] = x_2[n+N] \]

then the Fourier series coefficients for \(x[n] \) are given by

\[
X[k] = \frac{1}{N} \sum_{n=<N>} x[n]e^{-jk\frac{2\pi}{N}n} = \frac{1}{N} \sum_{n=<N>} (ax_1[n] + bx_2[n])e^{-jk\frac{2\pi}{N}n} \\
= a \frac{1}{N} \sum_{n=<N>} x_1[n]e^{-jk\frac{2\pi}{N}n} + b \frac{1}{N} \sum_{n=<N>} x_2[n]e^{-jk\frac{2\pi}{N}n} \\
= aX_1[k] + bX_2[k]
\]

where \(X_1[k] \) and \(X_2[k] \) are Fourier series coefficients for \(x_1 \) and \(x_2 \).
Properties of Discrete-Time Fourier Series

Operations on the time representation of a signal can often be interpreted as equivalent operations on the series coefficients.

Example: Shifting time changes the phases of Fourier components.

Proof: Let
\[y[n] = x[n - n_0] \quad \text{where} \quad x[n] = x[n + N] \]

If
\[X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk \frac{2\pi}{N} n} \]

then
\[Y[k] = \frac{1}{N} \sum_{n=\langle N \rangle} y[n] e^{-jk \frac{2\pi}{N} n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n - n_0] e^{-jk \frac{2\pi}{N} n} \]
\[= \frac{1}{N} \sum_{m=\langle N \rangle} x[m] e^{-jk \frac{2\pi}{N} (m+n_0)} \quad \text{where} \quad m = n - n_0 \]
\[= e^{-jk \frac{2\pi}{N} n_0} \frac{1}{N} \sum_{m=\langle N \rangle} x[m] e^{-jk \frac{2\pi}{N} m} = e^{-jk \frac{2\pi}{N} n_0} X[k] \]
Properties of Discrete-Time Fourier Series

Operations on the time representation of a signal can often be interpreted as equivalent operations on the series coefficients.

Example: Flipping time flips frequency.

Proof: Let

\[y[n] = x[-n] \quad \text{where} \quad x[n] = x[n + N] \]

If

\[X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j \frac{2\pi}{N} n} \]

then

\[Y[k] = \frac{1}{N} \sum_{n=\langle N \rangle} y[n] e^{-j \frac{2\pi}{N} n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[-n] e^{-j \frac{2\pi}{N} n} \]

\[= \frac{1}{N} \sum_{m=\langle N \rangle} x[m] e^{j \frac{2\pi}{N} m} \quad \text{where} \quad m = -n \]

\[= X[-k] \]
Properties of Discrete-Time Fourier Series

Operations on the time representation of a signal can often be interpreted as equivalent operations on the series coefficients.

Example: If \(x[n] \) is a real-valued sequence, then \(X[-k] = X[k]^* \).

\[
X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j k \frac{2\pi}{N} n}
\]

\[
X[-k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{j k \frac{2\pi}{N} n} = X[k]^*
\]
Properties of Discrete-Time Fourier Series

Operations on the time representation of a signal can often be interpreted as equivalent operations on the series coefficients.

Example: Even and Odd Decomposition

Find the Fourier series for the even and odd parts of a signal.

\[
x[n] \, \overset{\text{FS}}{\leftrightarrow} \, X[k] \\
x[-n] \, \overset{\text{FS}}{\leftrightarrow} \, X[-k]
\]

\[
\text{Even}(x[n]) = \frac{1}{2}(x[n] + x[-n]) \, \overset{\text{FS}}{\leftrightarrow} \, \frac{1}{2}(X[k] + X[-k])
\]

If \(x[n] \) is real, then \(X[-k] = X[k]^* \).

\[
\text{Even}(x[n]) = \frac{1}{2}(x[n] + x[-n]) \, \overset{\text{FS}}{\leftrightarrow} \, \frac{1}{2}(X[k] + X[k]^*) = \text{Re}(X[k])
\]

\[
\rightarrow \quad \text{Even}(x[n]) \, \overset{\text{FS}}{\leftrightarrow} \, \text{Re}(X[k])
\]

Similarly

\[
\rightarrow \quad \text{Odd}(x[n]) \, \overset{\text{FS}}{\leftrightarrow} \, j\text{Im}(X[k])
\]
Summary

Discrete-Time Fourier Series

- orthogonality of harmonically related DT sinusoids
- DT Fourier series relations
- differences between CT and DT Fourier series
- properties of DT Fourier series

Today’s Lab:

Use DT Fourier Series to Understand an Auditory Perception.

For today only: Students who normally have lab in 1-150 should stay here instead.